Cyclizations of N-Acyliminium lons Bruce E. Maryanoff,* Han-Cheng Zhang, Judith H. Cohen, Ignatius J. Turchi, and Cynthia A. Maryanoff Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776 Received July 7, 2003 | Contents | | |---|------| | 1. Introduction | 1431 | | 2. Mechanism and Stereochemistry | 1433 | | 2.1. Reactive Species | 1433 | | 2.2. Kinetic and Thermodynamic Control | 1435 | | 2.3. Stereochemistry of Cyclizations and Mechanistic Implications | 1435 | | 2.3.1. Benzenoid and Heterocyclic Nucleophiles | 1435 | | 2.3.2. Alkenes as Nucleophiles | 1438 | | 2.3.3. Alkynes as Nucleophiles | 1443 | | 2.3.4. Carbonyl Groups as Nucleophiles via
Enols and Enolates | 1444 | | 3. Scope and Limitations | 1447 | | 3.1. Sources of <i>N</i> -Acyliminium lons | 1447 | | 3.1.1. Reaction of Amides with Aldehydes or Ketones | 1448 | | 3.1.2. Addition of Nucleophiles to Imides | 1448 | | 3.1.3. N-Acyl Enamines (Enamides) | 1449 | | 3.1.4. Oxidation of Amides at the Carbon α to Nitrogen | 1449 | | 3.1.5. Decarboxylation of α -Amido Acids | 1449 | | 3.1.6. Acylation of N-Substituted Imines | 1450 | | 3.1.7. Cycloaddition and Cyclization Reactions | 1450 | | 3.2. Reactions of Benzenoid Nucleophiles | 1450 | | 3.2.1. Synthesis of Erythrinanes | 1450 | | 3.2.2. Tandem Reactions | 1452 | | 3.2.3. Effect of Substituents on the Iminium Ion | 1453 | | 3.2.4. Competition between Carbon Nucleophiles | 1454 | | 3.2.5. Formation of Five-Membered and Seven-Membered Rings | 1455 | | 3.2.6. Enantiospecific Synthesis | 1456 | | 3.2.7. Bicyclic Bridgehead Iminium Ions | 1456 | | 3.2.8. Cyclic Ions Containing Additional Heteroatoms | 1456 | | 3.3. Reactions of Heterocyclic Nucleophiles | 1458 | | 3.3.1. Furans and Thiophenes | 1458 | | 3.3.2. Pyrroles, Imidazoles, and Pyridines | 1460 | | 3.3.3. Cyclization of Indoles via the Pyrrole Ring | 1461 | | 3.4. Reactions of Alkenes and Related Species | 1463 | | 3.4.1. Standard Alkenes | 1463 | | 3.4.2. Vinyl Ethers and Thioethers | 1470 | | 3.4.3. Vinylsilanes | 1471 | | 3.4.4. Allylsilanes and Allylstannanes | 1472 | | 3.4.5. Allenes | 1474 | | 3.4.6. Enols and Enolates | 1475 | |--|------| | 3.5. Reactions of Alkynes | 1476 | | 3.5.1. Standard Alkynes | 1476 | | 3.5.2. Propargylsilanes | 1478 | | 3.6. Reactions of σ -Nucleophiles | 1479 | | (Carbocyclizations) | | | 3.7. Reactions on the Solid Phase | 1480 | | 4. Comparison with Other Related Methods | 1480 | | 4.1. Intramolecular Mannich Reactions | 1481 | | 4.2. α-Acylamino Radical Cyclizations | 1482 | | 5. Comprehensive Tabular Survey of Reactions | 1484 | | 6. Acknowledgments and Dedication | 1485 | | 7. References | 1622 | #### 1. Introduction Iminium ions are important, reactive species in organic synthesis for the construction of carbon—carbon and carbon—heteroatom bonds. Indeed, the well-known Mannich^{1–5} and Pictet—Spengler^{6–10} reactions, which have played a major role in organic chemistry for nearly 100 years, make effective use of electrophilic iminium ions. Generally speaking, these chemical processes are α -aminoalkylation reactions with the iminium ion serving as a defining reactive element. The classical Pictet—Spengler reaction is actually a subtype of the Mannich reaction involving a cyclization process, such that it represents an intramolecular α -aminoalkylation. A further classification of iminium ion-based chemistry entails iminium species in which the nitrogen atom is acylated. Owing to the electron-attracting properties of the carbonyl group on nitrogen, the iminium carbon is now more electron-deficient, which causes such N-acyliminium ions to be much more reactive as electrophiles than simple N-alkyliminium ions. This favorable situation has spawned a large, separate area of versatile electrophilic chemistry known as α -amidoalkylation reactions, which are expressed generically in eq $1.^{11-19}$ Here, too, the $$C = N R' + H-Nu \longrightarrow C - N R' + HX$$ $$O X Nu = nucleophile O$$ (1) subtype involving cyclization, i.e., the intramolecular reaction of N-acyliminium ions, has received considerable attention in organic chemistry, particularly with respect to the synthesis of alkaloid natural products. ^{15–19} Fortunately, nucleophiles that are relatively unreactive in the intramolecular Mannich ^{*} To whom correspondence should be addressed. E-mail: bmaryano@prdus.jnj.com. Fax: (215) 628-4985. Bruce E. Maryanoff earned B.S. (1969) and Ph.D. (1972) degrees from Drexel University and then conducted postdoctoral studies at Princeton University, working with Prof. Kurt Mislow. He joined McNeil Laboratories, a Johnson & Johnson subsidiary, in 1974 and advanced to Distinguished Research Fellow, the highest scientific position in the company. From 1976 to 1992, he principally worked on discovering drugs for treating central nervous system disorders; in 1992, he moved into cardiovascular research and presently leads the Vascular Research Team. Dr. Maryanoff is recognized for his work in organic and medicinal chemistry, especially the Wittig olefination reaction; peptides and peptidomimetics; antiepileptics and antidepressants; thrombin inhibitors; and protease-activated receptors. He discovered TOPAMAX topiramate, which is marketed worldwide for the treatment of epilepsy and is being developed for migraine headache. He has published 200 scientific papers, is an inventor on 60 U.S. patents, and has received two national awards, the ACS Heroes of Chemistry Award (2000) and the ACS Award in Industrial Chemistry (2003). Dr. Maryanoff is a Fellow in the American Association for the Advancement of Science and the Royal Society of Chemistry. Han-Cheng Zhang received B.S. and M.S. degrees in chemistry from Xiamen University, P.R.C., and served as a faculty member there for 5 years. He came to the United States and earned a Ph.D. degree in organic chemistry from Rensselaer Polytechnic Institute (1992), working with Prof. Doyle Daves. He joined the R. W. Johnson Pharmaceutical Research Institute as a Postdoctoral Scientist with Dr. Bruce Maryanoff and, after one year, as a Scientist. Dr. Zhang has worked as a medicinal chemist in the areas of G-protein-coupled receptors, proteases, and kinases to discover new drug candidates, recently leading a project that identified the first potent, selective antagonists for the thrombin receptor, proteaseactivated receptor 1. He is now at the level of Principal Scientist in Johnson & Johnson Pharmaceutical Research & Development. Dr. Zhang has published over 40 scientific papers and is an inventor on 13 U.S. patents (issued or pending). His scientific interests include the design and synthesis of novel therapeutic agents, heterocycles, stereoselective reactions, organometallic chemistry, and solid-phase organic synthesis. reaction, such as unactivated benzenoids, participate effectively in cyclizations with *N*-acyliminum species. Electron-attracting substituents other than *N*-acyl, such as N-sulfonyl, can also be employed in analogues Judith H. Cohen received her B.S. degree in chemistry from the University of Delaware (1990) and immediately joined the R. W. Johnson Pharmaceutical Research Institute in the Chemical Development Department. She has worked as a process research chemist to develop scalable syntheses of new drug candidates and has advanced to the level of Scientist. Ms. Cohen has been recognized both internally and externally for her scientific accomplishments, receiving several awards including the Johnson & Johnson Vice-President's Technical Achievement Award (1994) and the Technical Achievement in Organic Chemistry Award from the Organic Division of the American Chemical Society (1998) for her outstanding technical contributions to organic chemistry. She is an author on nine scientific papers and 13 meeting abstracts, and is an inventor on five U.S. patents (issued or pending). Ignatius J. Turchi received his B.S. degree in chemistry from Drexel University and his Ph.D. degree in organic chemistry from The University of Texas, Austin, working with Prof. Michael J. S. Dewar. He held postdoctoral positions at The University of Munich with Prof. Rolf Huisgen and at Princeton University with Prof. Edward C. Taylor. Dr. Turchi has had a diverse career that has spanned process research, medicinal chemistry, and computational chemistry; he has published 31 papers in these areas. He is editor of volume 40 of the Chemistry of Heterocyclic Compounds, on "Oxazoles". After a stint as a synthetic chemist in the Chemical Development Department at Johnson & Johnson Pharmaceutical Research & Development, he moved into the Computer-Assisted Drug Discovery Team, where he has been for the last six years, currently with the title of Research Fellow. His research interests are structure-based virtual screening and de novo molecular design. of N-acyliminium ion reactions. However, this review will concentrate on cyclizations of the *N*-acyl type, encompassing groups such as alkanoyl, aroyl, carbalkoxy, and N,N-dialkylcarbamyl, with limited coverage of sulfonyl groups. Most significantly, this review will focus on intramolecular reactions of N-acyliminium ions that result in the formation of new carbon-carbon bonds, rather than new carbonheteroatom bonds. Although β -lactam synthesis based on the cyclocondensation of imines with acid halides, Cynthia A. Maryanoff received a B.S. degree from Drexel University (1972) and a Ph.D. degree from Princeton University (1976), working with Prof. Kurt Mislow. She conducted postdoctoral studies with Prof. Edward C. Taylor at Princeton. After a short stint at Smith, Kline and French Laboratories as a medicinal chemist, Dr. Maryanoff joined Johnson & Johnson in 1981 as Section Head of Chemical Development. In 2001, she advanced to Distinguished Research
Fellow, the highest scientific position in the company. Currently, she is Drug Evaluation-Global Head of Chemical & Pharmaceutical Development, whereby she directs all of the basic functions required for the study of new chemical entities in the early development stage, including synthesis, analysis, and formulations, to gain rapid entry into human clinical trials. She has published over 80 scientific papers, is an inventor on 32 patents, has served on the Executive Committee of the ACS Organic Division since 1988, and has been recognized by several awards, including the Francis P. Garvin-John M. Olin Medal (1999), a prestigious ACS national award. Dr. Maryanoff is a Fellow in the American Association for the Advancement of Science. ketenes, or their equivalents can be viewed mechanistically as an *N*-acyliminium ion cyclization, ²⁰ this process will receive just limited attention. On the other hand, we will cover the related cyclocondensation of imines with cyclic carboxylic anhydrides, which yields γ - and δ -lactams, in considerable detail. Certain specialized reaction types that potentially represent *N*-acyliminium ion cyclizations will not be addressed, namely: (1) intermolecular [4 + 2] polar cycloadditions of N-acyliminium ions (e.g., [CH₂= $N(R')C(O)R]^+$ + alkenes \rightarrow 5,6-dihydro-1,3-oxazines), (2) intramolecular electrophile-induced [4 + 2] cycloadditions of N-acylimines (e.g., indolo-2,3-quinodimethide cycloaddition), and (3) Biginelli condensations (e.g., ArCHO + R"CH₂C(O)CH₂CO₂R' + $H_2NC(O)NR_2 \rightarrow dihydropyrimidin-2$ -ones). Exclusion of these reaction classes is predicated on the fact that their cyclization step does not depend directly on an N-acyliminium ion. Additionally, this review will not deal with cyclizations of species considered to be vinylogous N-acyliminium ions, i.e., species with a carbon-carbon double bond conjugating an acyl group to nitrogen. Under these constraints on content, we intend to provide comprehensive coverage of N-acyliminium ion cyclizations over the entire course of history. 15-19 Overall, the text portion of this review will discuss the pertinent literature through 2000, with selective coverage of information published in 2001–2002. However, the tabular portion will cover all of the pertinent literature through most of 2002 comprehensively (see section 5, Comprehensive Tabular Survey of Reactions). The earliest work on *N*-acyliminium ion cyclizations, in the 1950s, principally dealt with the syn- thesis of isoquinoline and indole alkaloids.^{21–34} A key representative of the applications from this era is the cyclization from Belleau's erythrinane synthesis (eq 2), which afforded spirocyclic lactam **2** via acyliminium ion **1**.²¹ In a subsequent paper,²³ it was suggested that, whereas the Pictet—Spengler approach to tetrahydroisoquinolines is limited in scope because of its sensitivity to minor structural changes around the carbonyl or aromatic groups, the N-acyliminium variant should, by contrast, offer tremendous potential because of the expected enhancement of electrophilic reactivity. A notable illustration of this viewpoint derives from the failure of iminium ion $\bf 3$ to cyclize under "various conditions" (eq 3) compared to the successful N-acyliminium ion cyclization of $\bf 4$ to $\bf 5$ (eq 4).²³ In the 1960s through the 1980s, several laboratories exploited N-acyliminium ion cyclizations, especially for the synthesis of natural products. $^{15-19}$ This period also witnessed a spate of studies on diverse reactions, particularly those involving alkene and alkyne nucleophiles, thus spurring this field tremendously. The milestones of this chemistry have been presented in several review articles. $^{15-19}$ It is noteworthy that Belleau's early proposal 23 about the potential advantages of using N-acyliminium electrophiles presaged a major advance in ring formation over the next 35 years—namely, N-acyliminium ion cyclizations. This method has become a very effective synthetic tool in the organic chemists' armamentarium. ## 2. Mechanism and Stereochemistry #### 2.1. Reactive Species *N*-Acyliminium ions can be generated as discrete salts, paired with non-nucleophilic anions, ^{15,35–40} although this is a relatively rare undertaking restricted to physicochemical studies. In synthetic transformations, the reactive species are almost exclusively produced in situ during the course of the desired reaction by a variety of useful techniques, which will be addressed in section 3, Scope and Limitations. An *N*-acyliminium ion is most likely not generated stoichiometrically in the course of a reaction, as it can exist in equilibrium with a covalent adduct (eq 5). The proportion of the ionic form and the covalent $$C = N R' \qquad \qquad X R R' \qquad \qquad (5)$$ form may vary significantly depending on the nature of the anion and on experimental conditions. For example, the adducts formed from the treatment of benzaldimines with simple acid chlorides are substantially comprised of aryl $\alpha\text{-chloro}$ amides, rather than N-acyliminium salts. 41,42 Indeed, in their studies of the reaction of $\alpha\text{-alkoxy}$ carbamates with Lewis acids, Yamamoto et al. not only identified intermediate N-acyliminium ions in solution, but also characterized this type of equilibrium. 36 *N*-Acyliminium ions, as carbocationic species, can suffer loss of a proton in an elimination process to yield an enamide (eq 6). The facility of enamide generation from *N*-acyliminium ions will depend on the acidic reagent and the solvent, as well as the substrate structure.⁴³ Cyclic enamides can accumulate in *N*-acyliminium cyclizations that are relatively sluggish, because of a less reactive nucleophile or steric encumbrance. In many instances, especially under protic acid conditions, this side reaction can be easily reversed. This point is demonstrated by the fact that enamides serve in many situations as *N*-acyliminium ion precursors in cyclization reactions (see Scope and Limitations). For example, enamide 7 (a mixture of 4a,8a and 8,8a olefin isomers from keto ester **6**⁴⁴ and 2,2-diphenylethylamine) cleanly cyclizes to **8** with polyphosphoric acid (eq 7).⁴⁵ How- ever, effective reprotonation of an enamide in an N-acyliminium ion cyclization is not guaranteed, and other side reactions may then ensue. The problem of enamide protonation has arisen in cyclizations involving heteroatom-containing cyclic N-acyliminium ions, although it can be obviated by blocking elimination with gem-dimethyl substituents (see Scope and Limitations). In the context of side reactions, an enamide generated in situ can behave as a nucleophilic component, thereby combining with its N-acyliminium ion cognate to yield coupled, dimeric side products, 45 as exemplified in the reaction of $\bf 9$ with formic acid (eq $\bf 8$). 46 Substrate $\bf 9$ affords dimer $\bf 11$, from reaction of ion 10a and enamide 10b, along with the expected quinolizidine 12 in a 1:5 ratio at a concentration of ca. 0.15 M. However, 12 is obtained exclusively in 89% yield under more dilute conditions (ca. 0.01 M). In general, this dimerization should pose a problem in N-acyliminium ion cyclizations only when the nucleophilic partner is not sufficiently reactive, such as with the acetylene group here, or when unfavorable stereoelectronic factors exist, such as in the formation of a medium-sized ring. 15-19 There is only limited information on the relative reactivity of different *N*-acyliminium ions. The intermolecular reaction between 1,3,5-trimethoxybenzene with four cyclic methoxy amides, promoted by aluminum(III) chloride, provides relative reactivity data that show an inverse correlation with the stability of the *N*-acyliminium ions. Thus, the rate-determining process here appears to be generation of the acyliminium species, rather than electrophilic substitution. ^{15,47} The five-membered-ring endocyclic amide **13** reacts more slowly than the exocyclic amide **14a** (by 7-fold), and the five-membered-ring exocyclic amide **14a** reacts more slowly than the six-memberedring exocyclic amide **14b** (by 4-fold), but these rate differences are not very dramatic, as they reside within 1 order of magnitude. N-Acyliminium ions bearing an exocyclic urethane exhibit comparatively high reactivity. For a set of cyclic N-acyliminium ions undergoing addition of allyltrimethylsilane in the gas phase, the relative electrophilic reactivity is **15** < **16** \ll **17**.⁴⁸ This pattern was confirmed in an intramo- lecular competition study where an *N*-acyliminium ion with an exocyclic urethane was found to be much more reactive than one with an endocyclic amide.⁴⁹ Perhaps the most reactive *N*-acyliminium ions known are those with a bridgehead carbocation in a polycyclic system, such as **18**⁵⁰ and **19**,⁵¹ since stabilization of the cation by the amide nitrogen is stereoelectronically disfavored according to Bredt's rule. ### 2.2. Kinetic and Thermodynamic Control The products from *N*-acyliminium ion cyclizations are normally stable under the conditions of their formation. For instance, while certain products from the reaction of *N*-alkyliminium ions with alkenes can suffer Grob fragmentation, the corresponding products from *N*-acyliminium—olefin cyclizations are not susceptible to fragmentation.¹⁵ Additionally, there is evidence for kinetic control in N-acyliminium cyclizations of benzenoid nucleophiles. Ring closures with phenyl and 3,4-dimethoxyphenyl (DMP) groups are devoid of stereochemical equilibration, as determined by a constant isomer ratio during the time course of cyclization and/or by the failure of the products to equilibrate.⁴⁵ For example, the reaction conditions used to cyclize 20 to 21a and 21b do not interconvert the products (eq 9).⁴⁵ Acid-promoted lactam equilibration can take place under special circumstances, such as when a 3-in-dolyl group is involved. Lactam
23b, the exclusive isomer from N-acyliminium cyclization of keto amide **22** (eq 10), is separately converted to epimer **23a** on treatment with trifluoroacetic acid. How- ever, this equilibration requires harsher acidic conditions (CF₃CO₂H, >15 h, room temperature) than the cyclization of **22** (1% aqueous CF₃CO₂H, room temperature).⁵² This process can proceed with even greater facility, such as with lactams **24a** and **24b**, which independently equilibrate to a 70:30 mixture with trifluoroacetic acid in 2 h at room temperature, or in 5 min at reflux.⁵³ Lewis acidic conditions also qualify, as in the independent equilibration of lactams **25a** and **25b** to a 1:1 mixture with boron trifluoride etherate (35–40 °C, 10 h). ⁵⁴ The mechanism for lactam interchange appears to be an S_N 1-like heterolytic cleavage of the carbon–nitrogen bond at the ring junction, rather than a reverse N- acyliminium cyclization. ^{53,55} Fortunately, in general practice N-acyliminium ion cyclizations of such π -rich heterocycles are not plagued by equilibration, probably because of the mild conditions employed and the rapidity of ring closure. To illustrate this point, there is no equilibration in the highly stereoselective, rapid cyclization of **26** to **27a** and **27b** ($\mathbf{a}/\mathbf{b} = 92:8$) with ethanolic methanesulfonic acid at room temperature. ⁴⁵ In summary, N-acyliminium ion cyclizations are expected to proceed under kinetic control. However, one might exercise caution in interpreting results from reactions that are conducted with π -rich heterocyclic nucleophiles under strongly acidic conditions at elevated temperatures. # 2.3. Stereochemistry of Cyclizations and Mechanistic Implications The stereochemical course of N-acyliminium ion cyclizations has received considerable attention over the years amidst various synthetic applications, and many types of reactions afford excellent stereoselectivity. Indeed, stereochemical control has become a hallmark for N-acyliminium ion cyclizations of diverse substrates containing aromatic, heterocyclic, alkene, alkyne, and keto/enol nucleophiles.15-19 The favorable results commonly derive from straightforward stereoelectronic factors, similar to those in related cationic π -cyclizations. Salient control elements are (1) steric approach control of the nucleophile to the iminium species, (2) steric interactions involving substituents, and, if pertinent, (3) steric interactions in the addition of nucleophiles to the new cyclic carbocation. This section will highlight key features associated with effective stereocontrol and elaborate on aspects of the reaction mechanism. #### 2.3.1. Benzenoid and Heterocyclic Nucleophiles The synthesis of *Erythrina* alkaloids has served as an important arena for stereochemical observations. The "Belleau-type" N-acyliminium ion cyclizations in eqs 2 and 4 occur with sole formation of the cis-fused perhydroindole system.²³ This stereochemical outcome can be explained by steric effects that arise in the orthogonal approach of the π orbital of the arene nucleophile to the plane of the iminium ion.²³ The alternative "Mondon-type" cyclization, which has a different location of the amide carbonyl (e.g., as in **28**), is also completely stereoselective for the cis-fused isomer, such as **29** (eq 11), ^{26,27,32} and this pattern is general for a diversity of substrates. $^{27,32,33,45,59-88}$ The transformation of N-acyliminium ion precursor **30** exclusively to **31** illustrates this point in a more elaborate system (eq 12). 83,86 The stereocontrol here derives from preferential addition of the arene nucleophile to the sterically less hindered face of the N-acyliminium ion. A noteworthy, diverse platform for N-acyliminium cyclizations of arene π -nucleophiles is found in the reactions of indoles. A classical application exists in an early total synthesis of (\pm) -yohimbine (eq 13). 31,89 *N*-Acyliminium ion precursor **33**, a trapped dialdehyde from sodium metaperiodate oxidation of **32**, reacts with phosphoric acid to yield polycyclic lactam **34** (pseudoyohimbine configuration) in 60% yield with high stereoselectivity. This stereochemical outcome can be explained on the basis of preferential addition of the indole to the electrophilic carbocation center from a pseudoaxial direction in a conformationally constrained *trans*-decalin array, as depicted in **35**. However, such stereochemical homogeneity may not arise consistently. For example, in an analogous cyclization en route to emetine, **36** leads to a mixture of three stereoisomers, including the corresponding **37** (eq 14). ⁹⁰ Perhaps the difference in outcomes may relate to the greater reactivity of an indole group ⁹¹ compared to a dimethoxyphenyl group. The N-acyliminium cyclization has been effective in the synthesis of a wide range of indole alkaloids. 15,19 In general, a tryptamine unit is condensed with a keto or aldehydo carboxylic acid derivative to give an N-acyliminium ion precursor that cyclizes under acidic conditions. However, there is only modest stereoselectivity in numerous syntheses, such as those of vincamine, 92-95 dihydrocleavamines, 96 quebrachamine, 51,97-99 eburnamonine, 51,99-102 and antirhine. 103 These inauspicious results could be associated with several factors: (1) an absence of steric distinction between substituents on a key stereogenic center, (2) location of the stereogenic center relative to the newly formed bond(s), (3) equilibration of product diastereomers, 52-54,99 or (4) excessive conformational flexibility. For example, a single stereogenic center adjacent (α) to the carbocation center that is generated is not conducive to good stereocontrol (e.g., eq 15⁹³), ^{54,92,93,99-102} although certain structural con- $$\begin{array}{c|c} O \longrightarrow Et \\ \hline 110Ac \\ 118 ^{\circ}C \\ 24 \text{ h} \end{array}$$ $$\begin{array}{c|c} H & N \\ Et' \\ 00\% = 1:2 \quad (ca. 60\%) \end{array}$$ (15) straints can alter this situation (eq 10).⁵² In some cases a β stereogenic center fosters good stereocontrol (e.g., eq 16^{105}), $^{104-106}$ whereas in others it does not (e.g., eq 17^{103}). 103,107 Nevertheless, highly stereoselective N-acyliminium cyclizations are integral steps in the syntheses of inter alia roxburghin D, 52 eburnamonine, 100 quebrachamine, 104 antirhines, 105,106 vindorosine, 108 vindoline, 109 20-desethylvincadifformine, 110 and geissoschizine. 111 CHCO₂Me H HOAc toluene reflux $$_{48 \text{ h}}$$ H $_{H}$ $_{O}$ In a formal total synthesis of (+)-vincamine, three new rings are created in the N-acyliminium ion cyclization, but the reaction offers just a 1.5:1 ratio of isomers (eq 18). 95 However, in the analogous cyclization of **38**, an isomer ratio of 18:1 is obtained (eq 19; 7:1 at 20 °C). 100 This high stereoselectivity may originate in an electronic effect of the π -bond of the vinyl group, perhaps via a $\pi-\pi$ interaction with the indole. 100 In general, such indole-based cyclizations with substituents on the stereogenic center α to the carbocation in a six-membered-ring N-acyliminium ion deliver marginal stereoselectivities, in the area of 1:1. $^{53,92,93,99-102}$ HN $$CO_2$$ -t-Bu CF_3CO_2 H CH_2 Cl₂ CI_3 CI_3 Cl₂ II_3 II_4 II_5 The issue of kinetic vs thermodynamic control (vide supra) can occasionally impact the stereochemical outcome. Although the *N*-acyliminium cyclization in eq 16 yields one major product, 105 when the reaction is heated at reflux to shorten the duration, the other lactam isomer (not shown) predominates, presumably due to acid-catalyzed equilibration. A thermodynamic product composition is also probable in the cyclization of **39** to **40** (eq 20; $\alpha/\beta=1:6$) since the α isomer equilibrates to a 1:4 α/β mixture on heating with p-toluenesulfonic acid. 104 $$\begin{array}{c} NH \\ NH \\ Mel (xs) \\ MeCN/water \\ \Delta, 15 \text{ h} \\ Et \\ CO_2Et \\ 39 \\ 40 \\ (83\%; c/B - 1.56) \end{array}$$ $$(20)$$ In rare instances N-acyliminium ion attack can take place at the indole 3-position to effect spirocyclization (so-called β -cyclization). This type of indole cyclization is also seen with related Pictet—Spengler reactions. The cyclization of amide dialdehyde **41** to **42**, which possesses a strychnine skeleton, proceeds by electrophilic attack at the indole 3-position (HOAc/NaOAc with heating). ⁹¹ Later, it was found that the β -cyclization product arises from an initially formed α -cyclization product; ¹¹³ indeed, under the milder conditions of aqueous HOAc at room temperature, **41** gives the α -cyclization product **43** in ca. 35% yield as a mixture of diastereomers. Such *N*-acyliminium spirocyclizations can establish three to five stereogenic centers at once. ^{108–110} For example, tetracycle **44** is obtained with high stereoselectivity for the three stereogenic centers at the ring junctions (eq 21). ^{108,109} The *p*-tosyloxy sub- TsO N-Ac $$\begin{array}{c} BF_3 \cdot E_3 \cdot O \\ \hline NO \\ Me \end{array}$$ TsO $\begin{array}{c} Ac \\ NO \\ Me \end{array}$ H Me$ H $\begin{array}{c} Ac \\ NO \\ Me \end{array}$ H $\begin{array}{c} Ac \\ NO \\ Me$ H $\begin{array}{c} Ac \\ NO \\ NO \\ Me$ H $\begin{array}{c} Ac \\ NO \\ NO \\ Me$ H $\begin{array}{c} Ac \\ NO \\ NO \\ Me$ H $\begin{array}{c} Ac \\ NO \\ NO \\ Me$ H $\begin{array}{c} Ac \\ NO \\ NO \\ Me$ H stituent promotes formation of the spirocyclic product via β -cyclization over the β -carboline via α -cyclization, although the α -cyclization is favored by a more electron-releasing methoxy group. This spirocyclization involves a spiroindolenium ion (viz. **45**), prefer- entially generated with the *cis* configuration (shown), which cyclizes from the α -face to yield the observed product **44**. A related reaction that generates five stereogenic centers
simultaneously (eq 22) furnishes a 5:1 isomeric mixture with the major product having the same "cis–cis" configuration at the ring junctions. ¹¹⁰ Substituents on the chain linking an arene π -nucleophile to the amide nitrogen create the potential for diastereoselection. Two examples with substituents β to the nitrogen are shown in eqs 7 and 9. For various cases, \geq 90:10 stereoselectivity in favor of the *cis* configuration (α aryl and α angular substituent at the ring junction) is obtained. This stereochemical outcome hinges on preferential formation of a chairlike arenium ion intermediate, such as **46**, which favors the larger of R and R' in a quasiequatorial position, rather than a strained boatlike intermediate, such as **47**. The axial proton at the ring junction (angular position) in **46** is crucial for achieving the high stereoselectivity because of the 1,3-*syn*-axial interaction. Other steric factors can intervene to complicate this picture, as in the formation of **48** and **49** (eq 23). The dramatic reversal of stereoselectivity with cyclohexyl and *tert*-butyl groups, relative to the corresponding phenyl group, is attributable to competing steric factors. The Specifically, a bulky aliphatic substituent would experience significant A(1,3) and gauche-butane interactions, thereby biasing the bulky substituent into a β orientation. There is also competition between different steric interactions in the cyclizations of N- methylpyrrole and thiophene substrates (eq 24), which results in α/β product ratios of 74:26 and 96: 4, respectively,⁴⁵ presumably because of A(1,3) strain between the *N*-methyl and phenyl groups. When substituents on the linking chain are α to the amide nitrogen, A(1,3) strain becomes a decisive control element. Cyclization of **50**, with a phenyl substituent adjacent to nitrogen, leads exclusively to **51**, the product with a pseudoaxial phenyl, because of severe A(1,3) strain between a pseudoequatorial phenyl and the amide carbonyl in the competing transition structures. However, it is more complicated when two stereogenic determinants are on the linking chain, as in eq 25, where three out of the four possible lactams are formed in a ratio of $4:2:1.^{116}$ A balance of steric interactions is responsible for the distribution of lactams 52-54. Two unusual examples of N-acyliminium cyclizations involving A(1,3) strain are illustrated in eqs 26¹¹⁷ and 27.¹¹⁸ In eq 26, the ratio of isomeric products (a:b) depends on the Lewis acid; as indicated, trimethylsilyl triflate affords outstanding stereoselectivity. 117 Nevertheless, the A(1,3) strain of the trimethylsilyl triflate reaction appears to be counteracted by chelation in the other cases. In eq 27, although a phthalimido group would normally favor an equatorial orientation on a seven-membered ring, A(1,3) strain between the lactam carbonyl and the carbomethoxy group intervenes in the transition state for arenium ion formation, causing the ester group to strongly favor an axial orientation. 118 In fact, this steric effect is responsible for the failure of the α carbomethoxy epimer of **55** to cyclize. ¹¹⁸ Substituents on the lactam ring that contains the iminium center can be stereochemically influential. 119,120,121 For example, the cyclization of **57** with $$\begin{array}{c} O \\ O \\ O \\ O \\ CH_2Ph \\ \hline \begin{array}{c} O \\ CH_2Ch_2 \\ \hline \begin{array}{c} O \\ CH_2Ch_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CH_2Ch_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CH_2Ch_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \begin{array}{c} O \\ CO_2CHPh_2 \\ \hline \end{array} \\ \hline \end{array}$$ formic acid yields a preponderance of one stereoisomeric product (>98% *cis*), that from the arene nucleophile approaching the *N*-acyliminium ion from the side opposite to the adjacent substituent.¹¹⁹ Considering the arenium ion intermediates **58** and **59**, the pseudoaxial methyl group in **58** would interact adversely with the angular bridgehead hydrogen; however, this interaction is absent in **59**. Allylic A(1,3) strain can counterbalance this steric effect as in the cyclizations of **60a** and **60b**. ¹²¹ The low 8% yield of **61b** from **60b** compared with the 80% yield of **61a** from **60a** relates to A(1,3) strain compelling the thiophene to add from the *same side* as the phenyl substituent. ¹²¹ ### 2.3.2. Alkenes as Nucleophiles Cationic π -cyclizations involving alkene nucleophiles and N-acyliminium ions have broad utility in the synthesis of cyclic systems. Cyclization of a nitrogen-tethered, proximal alkene (for instance) can occur by two different modes of attack to furnish products with two different ring sizes, via exocyclic (62) [n-exo-trig ring closure] or endocyclic (63) [(n+1)-endo-trig ring closure] carbocation intermediates (eq 28). Subsequently, these carbocations could undergo standard transformations, such as solvent capture, addition of nucleophiles, elimination, or H Nu: rearrangement, to yield the final reaction products. In eq 28, the alkene is linked to the *N*-acyliminium species by the nitrogen atom, although it could just as well be connected to other positions. The reaction outcome will depend on various features, such as reactivity of the N-acyliminium ion, reaction conditions, types of substituents on the alkene, length of the tether, and position of the tether. Mechanistically, attack of an N-acyliminium ion on an alkene can be viewed in terms of antiperiplanar addition. For a concerted pathway, which is frequently seen in cationic polyene cyclizations, 56-58 the stereochemistry will be determined under kinetic control by conformational and stereoelectronic factors in the transition state. Under such conditions, the alkene configuration would be preserved in the product(s). A stepwise pathway involving a discrete carbocation intermediate is also possible. In this case, thermodynamic control and/or carbocation-derived byproducts could intervene. 69 R = CH₂ R' H R O 74a R = It, R' = Me 74b R = Et, R' = H OH 75 CF₃C(O)O H Although the first N-acyliminium cyclization with an alkene π -nucleophile was described in 1957, 25 two decades elapsed before this reaction class was seriously explored. 15,123,124 Pioneering studies in the $1970s^{15-19,123-139}$ set the stage for a profusion of applications to the stereoselective synthesis of alkaloid natural products. The introduction of mild cyclization conditions, such as formic acid at room temperature, was an important step forward, and this area has since burgeoned. 15,123,124 The cyclization of **64** to **65** (eq 29), ¹³⁰ a prototype reaction in this area, proceeds at room temperature in nearly quantitative yield with a high degree of stereochemical control (>90%). ¹²⁴ The mechanism of HCO₂H 18 h HCO₂H 18 h HCO)O N OEt 65 (100%; ca. 5% of other stereoselectivity and retention of alkene configuration in the products. ¹³⁰ Kinetic control is also evident for the cyclization of **75** to **76** in trifluoroacetic acid in connection with trapping by triethylsilane, in that **76** did not undergo reversion. ¹⁴⁰ The cyclization of **77** to **78a** and **78b** (tentative stereochemical assignment) in dichloroacetic acid results in a 70:30 ratio, which is kinetically controlled as suggested by the failure of a 57:43 mixture to equilibrate on exposure to dichloroacetic acid. ¹³⁰ However, there are some cases of alkene cyclizations that do not proceed under kinetic control. For example, the cyclization of **79** to **80** and **81** (tentative stereochemical assignment, but structure, such as **66**. ave a stepwise process intermediate **67**, which ent preferentially from potentially competing the transition state or supported in a later study¹⁴¹) gives a 61:39 product mixture after 2 h and a 34:66 mixture after 16 h, reflecting thermodynamic control. To Dramatic post-cyclization equilibration occurs in the reaction of **82**, where the **83a:83b** ratio shifts from 60:40 at 2 min to 0:100 at 18 h (eq 30). Excellent stereocontrol can be obtained relative to substituents on
the chain that links the alkene to the amide nitrogen. A substituent at the allylic position of the linking chain, β to the nitrogen, results in high stereoselectivity in standard (eq 31)¹³⁷ and tandem (eq 32)^{124,137} cyclizations. This desirable outcome most likely arises from a strong preference of the substituent for an equatorial orientation in a product-like transition state en route to **84**, which avoids an unfavorable 1,3 R/H *syn*-axial interaction (cf. arenium ion **46**). A substituent at the homoallylic position of this 6-endo-trig process could be concerted and involve a chairlike transition structure, such as 66. Alternatively, it is possible to have a stepwise process involving chairlike carbocation intermediate 67, which would be trapped by the solvent preferentially from the equatorial direction. A potentially competing pathway involving a boatlike transition state or intermediate, such as 68, is very energetically unfavorable. The conversion of 69 to C11-endo-3-azabicyclo-[3.3.1]nonanes **70** and **71** (56:44 ratio) with the *cis* configuration at the ring junction (ca. 100% yield) is a direct outgrowth of a chairlike cyclization transition state with maximum overlap of the reacting π orbitals.130 The mixture of formate regioisomers 70 and 71 arises from unusually fast 1,2-hydride migrations of the intermediate azabicyclo[3.3.1]nonyl carbocations, and the product ratios vary from 70:30 to 30: 70 depending on the acid used. A kinetically controlled process with a high degree of concertedness is supported by the fact that disubstituted alkenes of opposite stereochemistry generally cyclize with complete retention of the original configuration. For example, the conversions of *E*-isomer 72 to 74a and *Z*-isomer 73 to 74b occur with high the chain, α to the nitrogen, can also exert a strong stereochemical influence (e.g., eq 33).¹⁴³ The result in eq 33 is attributable to cyclization via a chair (rather than a boat) conformation with the key substituent preferring an axial rather than an equatorial position, in contradistinction to related polyolefin systems. Apparently, the development of unfavorable A(1,3) strain in the transition state for ring closure overrides adverse effects from 1,3-synaxial interaction (viz. 85; cf. $50 \rightarrow 51$). Similar steric forces operate in the highly stereoselective cyclization of 75 to 76. 140 Tandem cyclizations can deliver polycyclic systems in short order with high stereocontrol, under suitable conditions. For example, aza-steroids **88** and **89** are produced as single isomers in high yield with formic acid (eqs 34 and 35). ^{129,131} In the conversion of **87** to **90** (major isomer) with formic acid, the yield suffers (40%) because the reaction stalls at the monocyclic stage (eq 34). Nevertheless, this conversion can be driven to completion with trifluoroacetic acid (5 °C, 30 min) to give **90** in 84% yield. Tandem cyclization also offers an efficient, highly stereoselective route to *cis*-aryldecahydroisoquinolines (e.g., eq 36; 144,146,149 relative configuration revised (e.g., eq 36; 144,146,149 relative configuration revised to a cisfound ring, the stereocontrol is governed by a *cis*fused chair—chair transition state, as opposed to a $$\begin{array}{c|c} Ph & & & \\ \hline (CII,O)_n & & & \\ HCO_2H & & & \\ NHCO_2Et & & & \\ 1.5 h & & & \\ \end{array}$$ $$\begin{array}{c|c} HC(O)O & & Ph \\ HCO_2Et & & \\ HCO_2Et & & \\ \end{array}$$ $$\begin{array}{c|c} (36) \end{array}$$ *trans*-fused one, which minimizes adverse steric interactions between the 4-phenyl and 3-alkyl groups on the piperidine intermediate. In a related tandem polyene cyclization, four stereogenic centers in tricyclic product $\bf 91$ are established at once (eq $\bf 37$). Four stereocenters are still controlled when the alkene is unsubstituted (eq $\bf 38$), but the product, $\bf 92$, now contains a *trans*-fused decahydroisoquinoline nucleus. $\bf 129$ The chemistry of *N*-(2-alkenylethyl) *N*-acyliminium ions is less than straightforward because of the intervention of a 2-aza-Cope rearrangement. A "hidden" 2-aza-Cope rearrangement amidst a standard *N*-acyliminium cyclization was first revealed by trapping experiments. ¹⁵⁰ Treatment of **93** with formic acid or trifluoroacetic acid yields two cyclized products (**94**) with high stereoselectivity relative to the CH and PrCH centers, as expected from A(1,3) strain (eq 39). ¹⁵⁰ However, when the reaction with trifluoro- acetic acid is conducted in the presence of triethylsilane, a carbocation-trapping agent, lactam **96** and skeletally rearranged lactam **97** are obtained (eq 40). Clearly, the initial *N*-acyliminium ion **98** rearranges to the ion **99** via a 2-aza-Cope reaction as part of a rapid equilibrium; the comparatively slower reduction or cyclization then ensues. This kind of 2-aza-Cope rearrangement, which occurs in various, susceptible *N*-acyliminium systems, ^{151–168} can influence the cyclization products, such as whether five- or sixmembered rings are generated, and the stereochemical outcome. The stereochemical control that emanates from this process has benefited the synthesis of diverse alkaloids. For example, lactam **100** cyclizes in formic acid exclusively to pyrrolizidine **101** in 81% yield. ¹⁵¹ In the cyclization of complex substrate **102** to a mixture of **105** and **106**, high stereocontrol for three new stereogenic centers is dictated by geometric constraints of the [3,3] rearrangement of **103** to **104** (eq 41). ^{152,157} The stereocontrolled conversion of β -lac- tam **107** to carbapenam **110**, which is formed as a single isomer, is based on an aza-Cope N-acyliminium cyclization (eq 42).¹⁶⁵ After [3,3] allylic rearrangement on the less hindered face (viz. **108** \rightarrow **109**), resultant silyl enol ether **109** cyclizes on the same face as its tether to give solely **110**. Activated alkenes, wherein the nucleophilicity is accentuated by (a) silyl, $^{164,167-177}$ (b) thioether, $^{178-184}$ (c) silylmethyl, $^{166,177,185-210}$ and (d) stannylmethyl substituents, cyclize with some interesting stereochemical aspects. $^{211-213}$ The regioselectivity of vinylsilane cyclizations is governed by generation of a carbocation β to silicon (" β -silyl effect"); therefore, the new carbon—carbon bond forms at the silicon-bearing vinyl carbon. For example, N-acyliminium cyclizations of vinylsilanes 111^{171} and 112^{173} are highly regioselective and stereoselective, with the α isomer 113 being formed exclusively in the latter case (eq 43). By the same token, the *N*-sulfonyliminium cyclization of 114 affords aminocyclitol 115 with a strong preference for the α isomer (eq 44).¹⁷⁶ Me₃Si OMe $$p$$ -TsNH₃ OMe OMe OMe OMe OMe OMe $-78 \text{ to } 23 \text{ °C}$ NHTs $-78 \text{ to } 23 \text{ °C}$ NHTs $-78 \text{ to } 23 \text{ °C}$ OMe $-78 \text{ to } 23 \text{ °C}$ 23$ A 1,3-dithiane ketene dithioacetal facilitates the cyclization of **116** to give virtually a single product, **117** (eq 45).¹⁷⁹ The ketene dithioacetal confers com- AcO $$\frac{MeSO_2Cl}{El_1N}$$ AcO $\frac{Cl_1Cl_2}{20 \text{ to } 20 \text{ °C}}$ $\frac{S}{S}$ (45) plete control of cyclization regiochemistry via generation of a stabilized dithiocarbocation intermediate, and the acetoxy substituent directs stereochemistry by effectively blocking the α -face of the N-acyliminium ion. Analogous cyclizations of 118^{181} and 119^{183} are also highly stereocontrolled. In contrast, 120, with a six-membered lactam ring, gives a 1:1 mixture of indolizidine diastereomers in 84% yield. ¹⁸³ The stereoelectronic preference for axial attack on the allequatorial half-chair *N*-acyliminium ion seems to be balanced by the steric preference for attack *anti* to the neighboring 5-benzyloxy group. A single sulfur moiety on the alkene is also viable, as in the stereoselective formation of the bridged bicyclic compound **122** from vinyl sulfide **121** (eq 46). ¹⁸² In allylsilane reactions, $^{166,177,185-210}$ the regiochemistry is governed by the β -effect of silicon; thus, new carbon—carbon bonds are formed at the vinyl carbon distal from silicon (i.e., at the γ -position). Treatment of allylsilane **123** with trifluoroacetic acid, or of **124** with formic acid, provides vinylpyrrolizidine **125**, the contrathermodynamic *endo* product, as a single isomer in good yield. The absence of an effect from alkene geometry is consistent with an electrophilic addition mechanism, in which the "*syn*" (vicinal hydrogens *syn*) stereochemical preference for the new carbon—carbon bond is determined by stereoelec- tronic factors in the cyclization step (viz. **126** and **127**). ^{188,214} The cyclizations of **128** and **129** with trifluoroacetic acid also produce one stereoisomer, **130** and **131**, respectively, in high yield. The source of the "anti" (vicinal hydrogens anti) stereochemical preference for the new carbon—carbon bond in **130**/**131** is depicted in **132**. Analogously, tributylstannyl substrates **133** and **134** cyclize to **125** and **135**, respectively, with very high stereoselectivity. 211,212 In contrast, related spiro-indoline **136** gives **137** with the opposite configuration (vicinal hydrogens *syn*) (eq 47). 191 The synthesis of bridged azabicyclic molecules via allylsilane-based cyclizations is fraught with variable stereocontrol. $^{199-203,208,209}$ Reaction of ethoxypyrrolidin-2-one **138** in formic acid provides azabicyclo[3.2.1]-octanes **139** with a strong preference for an *endo* vinyl group (a/b ratio = 95:5); however, the homologous piperidin-2-one **140** affords the corresponding azabicyclo[3.2.2]nonanes **141** with little stereochemical preference (a/b ratio = 42:58) (eq 48). 202,203 Piperidin-2-one **142**, with a one-methylene linker to the allylsilane, gives azabicyclo[2.2.2]octanes
143a and **143b** in a 94:6 endo/exo ratio (94% yield), whereas pyrrolidin-2-one **144** gives the corresponding azabicyclo[2.2.1]heptanes (66%; not shown) with no stereochemical discrimination (endo/exo = 36:64). In sharp contrast, trimethylene-linked pyrrolidin-2-one **145** gives a strong exo preference in azabicyclo[4.2.1]-nonanes **146** (a/b = 8:92; 73% yield). The high endo selectivity for the conversion of **138** to **139** can be attributed to a chairlike transition state with the allylsilane in an equatorial orientation, as depicted in **147**. ²⁰² This type of stereocontrol also applies to much more complex substrates, as demonstrated by the highly stereoselective *N*-tosyliminium/allylsilane cyclizations of **148** to **149** (eq 49). ^{199,200} Intramolecular reactions of acyclic *N*-acyliminium ions with allylsilanes are useful for assembling vinylpiperidines and vinylpyrrolidines, with excellent stereocontrol in certain cases. ^{166,187,189,190,192} By means of a "glycine cation equivalent", **150** reacts with mesyl chloride and triethylamine to furnish pyrrolidine **151** with a *cis/trans* ratio of 11:89 (88% yield), whereas **152** furnishes piperidine **153** with a *cis/trans* ratio of 55:45 (79% yield). ¹⁸⁹ Similarly, the cyclization of **154** with diethylaluminum chloride produces pyrrolidine **155** as a single *trans* isomer in 69% yield, ¹⁸⁷ whereas **156** produces piperidine **157** with minimal stereoselectivity (cis/trans = 2:1; 60% yield). When the glycine-cation approach is applied to alkenes devoid of special activation, complex stereochemical results arise, partially due to an intervening 2-aza-Cope rearrangement. ^{161,164,166,215} Cyclizations of 2-substituted allylsilanes are also valuable. $^{185,186,194-198,207}$ *Cis*-fused hexahydrocyclopenta[b]pyrroles 207 and octahydroindoles 186,194 are obtained with excellent stereocontrol from pyrrolidine- and piperidine-based substrates, such as **158** and **159**, which have an allylsilane unit appended to the ring carbon adjacent to the incipient carbocation center (eqs 50^{207} and $51^{186,194}$). High stereocontrol can emanate from stereogenic centers on the five-membered lactam ring of cyclic $$\begin{array}{c|c} SiMe_3 & H \\ \hline CF_3CO_3II & H \\ \hline CO_2Me & {}^{CI_2CI_2}O_3CO_4 & MeO_2C & H \\ \hline \end{array}$$ N-acyliminium ions. 138,153,157,171,173,179,181,183,210,216 In particular, cyclization of substrates with an alkoxy or acyloxy substituent adjacent to the iminium ion center may strongly favor products with a bridgehead hydrogen syn to the substituent, as observed in eqs $41,^{153,157}$ $43,^{173}$ and $45,^{179}$ and the reactions of $111,^{171}$ $118,^{181}$ $119,^{183}$ and $134.^{211}$ In this vein, formic acid cyclization of 160 provides the 8aS isomer 161 exclusively in ca. 100% yield (no 162 is formed), with the 3,4-dimethoxy groups controlling the bridgehead stereochemistry of the indolizidinone product. 138 However, this type of stereocontrol can vary according to the substituents on the alkene nucleophile. 138,171,173,216 When the (*Z*)-ethyl group is removed, as in **163** or **164**, a mixture of two diastereomers is obtained with an 8aS:8aR ratio of 2:1 for $163 \rightarrow 165:166$ and 1.5:1 for $164 \rightarrow 167:168$. This stereochemical pattern, in which the bridgehead hydrogen is *syn* to the neighboring oxygen substituent, may not carry over to the cyclization of the corresponding six-membered-rings, since a 1:1 mixture of isomeric indolizidinones is obtained from **120**. 183 Stereogenic centers on the alkene segment can lead to high stereocontrol.²¹⁷ For example, treatment of oxazolidin-2-one **169** with boron trifluoride etherate produces **170** ($X = \alpha$ -OH) exclusively (eq 52).²¹⁷ The configuration of the bridgehead hydrogens is as expected from the N-acyliminium cyclization; however, the controlled introduction of the bridgehead hydroxyl arises from neighboring group participation of the benzoate substituent with the carbocation to form an intermediate 1,3-dioxolanium ion, which is hydrolyzed on aqueous workup. By contrast, treatment of **169** with aluminum(III) chloride affords **170** (X = Cl) as a 3.7:1 mixture of α/β chloro isomers (57% yield). On the other hand, **171** reacts with aluminum (III) chloride to yield only the β configuration, albeit as a mixture of OH and Cl species, **172** and **173** (eq 53).²¹⁷ #### 2.3.3. Alkynes as Nucleophiles *N*-Acyliminium ion cyclizations of alkyne nucleophiles have received considerable attention. ^{15,127,133,188,189,202–205,208,218–226} Ring closure onto alkynes can proceed through an *exo* or an *endo* vinyl cation intermediate (e.g., cf. **174** and **175**, respectively). In general, *endo* cyclization is favored for terminal acetylenes, regardless of the influence of ring strain, whereas *exo* cyclization is favored with internal acetylenes, but only in the absence of ring strain. ^{43,46} Alkyne-based reactions, as a whole, are not so stereochemically interesting compared with alkene-based reactions since the solvent-trapped vinyl cation in the product of the former reaction eliminates a stereogenic center. For instance, in the high-yielding formic acid cyclization of **176** to **177**, an intermediate en route to mesembrine, a ketone is generated at the site of formate addition and the configuration at the ring junction is exclusively *cis*, simply because of the ring constraint imposed by the tether to the ethenyl group. ^{127,132} Stereochemical and regiochemical results are variable in the synthesis of pyrrolizidines, indolizidines, and quinolizidines. Whereas phenylthioacetylene **178** cyclizes in formic acid to a moderately biased 4:1 mixture of pyrrolizidines **179a** and **179b** (after workup with 1.5 M HCl),²¹⁸ phenylacetylene **180** cyclizes to a 1:1 mixture of related PhC(O) epimers (although the ratio may be altered by product equilibration). The regiocontrol is exclusively *exo*, probably because of better linear resonance stabilization of the *exo* vinyl cation (viz. **174**), compared with the *endo* vinyl cation (viz. **175**), by the phenylthio or phenyl substituent.²¹⁸ By contrast, treatment of **181** with formic acid yields mostly the *endo* regioisomer **182**, rather than the *exo* regioisomer **183** (*endo/exo* = 90: 10), but each epimer is formed with high stereoselectivity. The one-carbon homologue **184** affords mostly the *exo* regioisomer **185** (*endo/exo* = 15:85), each epimer with high stereoselectivity, presumably because ring strain is less for indolizidine formation relative to pyrrolizidine formation. In fact, the cyclization of **186** shows minimal ring strain effects in yielding only *exo*-cyclized quinolizidines **187a** and **187b** with an α/β ratio of 9:1 (possibly from product equilibration). 43,46 The presence of a stereogenic center on the lactam ring of cyclic *N*-acyliminium ions may or may not engender high stereocontrol. For example, the cyclization of enantiomerically enriched substrates **188** and **189** with formic acid yields only the *endo* products, but the stereoselectivity is very different between them. ¹³⁸ Compound **188** provides a 1:1 mixture of indolizidine C8a epimers **190** (ca. 100% yield), while **189** provides **191** exclusively. ¹³⁸ MeQ OMe MeQ OMe MeQ OMe H OON $$S$$ H OON S ## 2.3.4. Carbonyl Groups as Nucleophiles via Enols and Enolates Active methylene and methine compounds can participate effectively in N-acyliminium ion cyclizations, presumably via the enol or enolate forms. This subsection will deal with such reactions, as well as cyclizations of enol silyl ethers (masked enols), the cyclocondensation of imines with carboxylic acid anhydrides, 227 and the formation of β -lactams via the Staudinger reaction. 20,227 An example of an enol cyclization with stereochemical interest is the exclusive formation of indolizidinone **192** from **193** in methanolic HCl.^{127,132} *Cis* stereoselectivity is also obtained in the related cyclization of **196** to **195**, starting with **194** (methyl vinyl ketone, Triton B; HCl, MeOH), 228 and in more complex systems (eqs 54^{229} and 55^{230}), because ring closure occurs preferentially from the less hindered face of the N-acyliminium ion. A noteworthy aspect has been the generation of complex bicyclic structures by cyclization of enol species.^{231–237} The synthesis of an advanced polycyclic intermediate en route to gelsemine via the conversion of **197** to **198** is a case in point.^{231,232} This reaction appears to be difficult due to the strained polycyclic ring system, which imposes a severe barrier to overlap of the enol and iminium π systems (viz. **199**). Nevertheless, 197 cyclizes in trifluoroacetic acid to 198 with excellent yield and stereoselectivity, even with respect to the bromine substituent. The stereochemical course is dictated by cyclization of the thermodynamically more favored ion 199, which derives from protonation of the more hindered concave face of the ene carbamate 197, thereby placing the bromo group exo in the transition state. A related approach to gelsemine involves a silyl enol ether as a masked-ketone nucleophile. 233-235 The E and Zisomers of 200 cyclize (BF3·Et2O, CH2Cl2) with a remarkable stereospecificity: (*E*)-**200** (E/Z > 90:10) gives mainly the *endo* aldehyde **201** (endo/exo = ca. 90:10; 79% yield), and (Z)-200 (Z/E > 90:10) gives mainly the *exo* aldehyde **202** (*endo/exo* = ca. $1\bar{0}$:90; 92% yield).233 This outcome can be rationalized by a chairlike transition state for 201 and a boatlike transition state for 202, the latter avoiding a severe steric interaction between the silyloxy group and the cyclohexene ring (cf. 203 and 204).233 An unusual N-acyliminium cyclization of enols derives from diazo addition to an α -amido sulfide to generate a sulfonium ylide.
$^{238-243}$ Cu(II)-catalyzed decomposition—rearrangement of penicillin-derived diazoketones yields a strained bicyclic product with remarkable stereochemical control (eq 56). 238 Thus, diazoketone **205** reacts with copper(II) acetylacetonate to give tricyclic ketone **206** as a single isomer in 43% yield. Mechanistically, a possible intermediate is the strained, bicyclic sulfonium ylide **207**, 238 which is cleaved to zwitterion **208**, containing an N-acyliminium ion and an enolate. Reclosure of **208** to the product would involve enolate addition to the N-acyliminium ion exclusively from the α -face, opposite to the β -oriented phthalimido group on the lactam ring. Although this result suggests a steric rationale, α -face attack also takes place exclusively when the phthalimido group is α -oriented. Minor byproducts from addition of the enolate oxygen to the acyliminium ion, such as **209** from the α -phthalimido isomer of **205**, ²³⁹ also possess the stereochemistry from α -face attack. ^{239,243} It is possible, however, to achieve addition from the β -face by tethering the diazocarbonyl group to the nitrogen substituent on the β -lactam ring (eq 57). ²⁴⁰ Imines can combine with cyclic anhydrides to yield cyclocondensation products that appear to arise from addition of a carboxylic acid enolate to an intermediate N-acyliminium species (e.g., eq 58). $^{227,244-276}$ A prototypical reaction involving succinic anhydride and PhCH=NMe yields pyrrolidinone **210** as a mixture enriched in the *trans* isomer (eq 58).²⁴⁴ Generally, succinic, glutaric, and homophthalic anhydrides condense well with benzaldimines, but just moderate stereochemical control is obtained. Mechanistic studies with succinic and homophthalic anhydrides support initial imine acylation by one of the anhydride carbonyls, to give species such as **211** and **212**, followed by electrophilic attack of the *N*-acyliminium carbon on the carbon adjacent to the remote carbonyl.^{245,265} The stereochemical outcome under kinetic control depends on the relative distribution and reactivity of the E and Z imines (viz. eq 59). ²⁶⁵ The cis-isoquinolone would derive from acylation of the E imine. Benzaldimines with larger substituents (e.g., phenyl or cyclohexyl) on nitrogen, which are inclined to favor the E configuration, show a stronger preference for the cis-isoquinolones. Peactions of N-methylbenzaldimines with homophthalic anhydrides, in which the benzoyl carbonyl reacts preferentially, normally favor the trans-isoquinolones, but a significant amount of cis isomer is still formed. It is noteworthy that the use of boron trifluoride etherate in this condensation results in exclusive formation of trans-isoquinolones, as well as an enhanced reaction scope. The tis is tis in The stereochemical outcome can be significantly affected by the solvent, with polar solvents leading to a larger proportion of the *cis* isomer (eq 60).²⁶⁵ With benzene, it is possible to achieve a highly biased *trans/cis* ratio of 92:8.²⁶⁵ This ratio can also be manipulated by substituent electronic effects (eq 61).²⁶⁵ In the reaction of substituted benzaldimines with homophthalic anhydride in chloroform, there is a broad range of trans/cis ratios, with the 4-nitro group affording 97:3 and the dimethylamino group affording 20:80.265 A linear Hammett relationship between the isomer ratios and σ^+ values of the substituents indicates a higher carbocationic character in the transition state of the rate-limiting step for the *cis* product relative to the *trans* product. Thus, for the *cis* product the rate-limiting step is probably initial addition of the imine to the anhydride, whereas for the *trans* product the rate-limiting step is probably imine E-Z isomerization. Imines constrained into a Z configuration (e.g., 213) react with homophthalic anhydrides to yield almost exclusively transisoquinolones (e.g., **214**), as long as equilibrating conditions are avoided. ^{265,276} To obtain such a high preference for the *trans*-isoguinolones, one must exercise caution to maintain kinetic control in the reaction, and prevent equilibration in the workup process. 249,265,276 An intriguing example of a *trans*-isoquinolone synthesis with a nonracemic chiral imine is illustrated in eq $62.^{266}$ The use of (R)-1-ferrocenyl-2-methylpropylamine as a chiral auxiliary results in a novel asymmetric synthesis with a strongly biased diastereomeric ratio of 8:1 in favor of the (3R,4R) isomer. The stereochemical outcome can be rational- $$F_{C} = ferrocenyl$$ $$HO_{2}C$$ $$Me$$ $$HO_$$ ized with a model of the intermediate acyliminium enolate, **215**, in which cyclization occurs by preferential addition of the carboxylate enolate to the bottom face of the iminium ion.²⁶⁶ A common synthetic entrée to the β -lactam functionality is a formal [2 + 2] cycloaddition of an imine to a ketene, or its reactive equivalent. ^{20,277–279} While this reaction can be performed with free ketenes, synthetic practice generally depends on the use of carboxylic acid halides or other activated forms, in a process known as the Staudinger reaction. From a mechanistic standpoint, one can view the Staudinger reaction as an N-acyliminium ion cyclization in which a carbonyl group serves as a nucleophile via its enolate. ^{20,277–279} There is experimental and theoretical evidence to support a nonconcerted two-step mechanism involving a zwitterionic intermediate, such as **216**, rather than a concerted one-step pericyclic process (eq 63). $^{20,277-280}$ In fact, putative zwitterionic intermediates have been trapped as stable adducts. 20 The reaction of an acid chloride with an *N*-arylimine in the presence of a tertiary amine base can yield β -lactam products completely via a ketene intermediate, rather than via an acid chloride—imine adduct (viz. **217**). 281 However, in the absence of a base, an α -chloro amide can form, although it may not provide the β -lactam on treatment with base. 281 Reaction of phenylacetyl chloride and *N*-arylbenzaldimines without base proceeds by two competitive mechanisms: cyclization of a zwitterionic species and cyclization of an α -chloro amide. 282 For the Staudinger reaction, it is generally accepted that the imine attacks the central carbon of the ketene, where the LUMO has its largest coefficient, in an orthogonal manner to generate an intermediate with the planes of the two reactants more or less perpendicular (eq 64). A semiempirical theoretical (SCF-MO) study indicates the following features for the reaction: (1) it occurs in two steps; (2) the N1-C2 bond is formed first to give a zwitterionic species, and then the C3-C4 bond is formed in an N-acyliminium cyclization; (3) the C4 substituent is oriented inward relative to the β -lactam ring for a (Z)-imine and outward for an (E)-imine in the cyclization transition state; (4) the trans and cis stereochemistry for the substituents on C3 and C4 depends on the exo and endo approach of the ketene, respectively; and (5) generally, (E)-imines give cis β -lactams and (*Z*)-imines give *trans* β -lactams because of a steric preference for exo approach (eq 64).²⁸⁰ Thus, the thermodynamically more stable exo Nacyliminium species undergoes conrotatory ring closure to produce the thermodynamically less stable $cis \beta$ -lactam. Such conrotatory cyclization can best occur in a clockwise fashion since the alternative requires the ketene hydrogen and imine substituent (R') to pass through each other.²⁸³ This mechanistic overview is consistent with (1) the preference for $cis\ \beta$ -lactams from many acyclic aldimines, which tend to favor the E configuration, and (2) the preference for $trans\ \beta$ -lactams from cyclic imines, which are constrained into the Z configura- tion.²⁰ However, the stereochemical course of the Staudinger reaction is not always soundly predictable because of a dependence on conditions, most notably the order of addition of reagents.²⁰ In general, when an acyl chloride (or its equivalent) is added slowly to a solution containing the imine and base (usually at low temperature), the reaction follows the zwitterionic route and the *cis* β -lactam is strongly favored. 20,281 When a base is added to a mixture of the acyl chloride (or its equivalent) and the imine, the reaction leads to cis/trans mixtures, often with a predominance of the $trans \beta$ -lactam. The latter conditions favor covalent adducts, such as 217, which can experience bond rotation followed by intramolecular S_N 2 displacement to form the β -lactam (eq 63). 20,42,281 The process is further complicated by facile interconversion of the imine and imine adduct forms (eq 63). A computational study of both pathways is in good accord with these stereochemical results.²⁸⁴ However, another factor to consider is the propensity of certain $cis \beta$ -lactams to equilibrate to $trans \beta$ -lactams on exposure to bases, 285,286 acids, 287,288 or elevated temperatures (e.g., 230 °C).²⁸⁹ An in-depth discussion of stereochemical results and asymmetric syntheses in ketene-imine cycloadditions is contained in an excellent review article.20 #### 3. Scope and Limitations N-Acyliminium ion cyclizations involve the attack of a fairly powerful electrophilic species on a suitably reactive nucleophile. This section will be concerned almost exclusively with carbon-centered nucleophiles, and the reactive components will be broadly classified into the categories of arenes, π -rich heterocycles, alkenes, and alkynes. Under the alkene topic, we will address the special nucleophiles, allenes, and enols/enolates. Another point to note is that N-acyliminium ion cyclizations can be performed as "unimolecular" or "bimolecular" reactions; that is, the N-acyliminium ion precursor can be either preconstructed or assembled in situ from two reactants.
This distinction is reflected in the organization of the tables (see section 5). There are two important advantages associated with intramolecular N-acyliminium ion reactions relative to the intermolecular version: (1) more facile generation of products from a substrate containing a relatively unreactive nucleophile, such as an unactivated benzenoid or alkene group, and (2) generally good stereochemical control, as discussed in the previous section. From a practical synthetic standpoint, *N*-acyliminium ion reactions conducted in strong acid media, such as polyphosphoric acid or sulfuric acid, are easier to work up relative to reactions that furnish amine or imine products because neutralization of the strong acid is frequently unnecessary to isolate the lactam products. N-Acyliminium ion cyclizations (e.g., eq 7) can be simply diluted with water or brine and then extracted or filtered. 45 Thus, N-acyliminium ion cyclizations can be particularly useful in synthesis because of the benefits gleaned from increased reactivity, good stereocontrol, and ease of reaction workup. Other favorable features are the diversity of approaches to N-acyliminium ion precursors and the diversity of reagents available for effecting cyclization. Also, milder reagents, such as formic acid, methanolic HCl, titanium(IV) chloride, boron trifluoride etherate, magnesium bromide, lithium perchlorate, and trimethylsilyl triflate, can often be employed. The milder conditions are especially suitable for the cyclization of more reactive substrates, such as those containing activated arenes, π -rich heterocycles, activated alkenes, and enols/enolates, as well as substrates with sensitive functionalities. In this section, applications of *N*-acyliminium ion cyclizations in synthesis are discussed with an eye toward reaction scope and limitations. First, we briefly present an organized collection of common approaches to *N*-acyliminium ion precursors. #### 3.1. Sources of *N*-Acyliminium lons *N*-Acyliminium ions can be accessed through a variety of means; however, because of their reactivity, they are almost always generated in situ. Since the synthetic methodology in this field has been amply reviewed, ^{15,17,19,290} we will provide only a brief overview of useful procedures, with an emphasis on those that have been applied to cyclizations. Numerous N-acyliminium ion precursors contain amides substituted on the nitrogen atom with an α -oxygenated carbon functionality, such as α -hydroxyl, α -alkoxy, or α -acyloxy alkyl groups (viz. **218**). In the case of N-(α -hydroxyalkyl)amides (**218**, R = H), the compounds are dissociable into secondary amide and carbonyl (aldehyde or ketone) components, but the amide adducts from electrophilic species such as chloral, formaldehyde, and glyoxylate are relatively robust. Compounds with the carbonyl and amide units present in the same molecule, and which are able to form five- or six-membered rings within a ring-chain equilibrium, generally form very stable adducts (viz. **219**). Regardless of whether these N-acyliminium ion precursors exist as a mixture of ring and chain isomers, they cyclize via N-acyliminium ions as though the ring-opened species were of no serious consequence. For instance, the adduct from 2,2-diphenylethylamine and α -angelicalactone, a 1:2 mixture of **220** and **221**, cleanly cyclizes in polyphosphoric acid at 100 °C to **222** (84% yield; 94:6 **a/b** ratio). 45,67 Another excellent example is illus- trated in eq 65.²⁹¹ Clearly, both open-chain and ringclosed forms are competent substrates for N-acyliminium ion cyclizations. ω -Hydroxy lactams can serve as N-acyliminium precursors, or one can install another leaving group, such as alkoxy (eqs 9 and 29),^{45,124} acetoxy (eq 43),¹⁷³ mesyloxy (eqs 45 and 51),^{179,186,194} or halogen (eq 42).¹⁶⁵ In many cases, ω -hydroxy or ω -alkoxy lactam intermediates are converted directly into the N-acyliminium species for cyclization, rather than being isolated and purified. #### 3.1.1. Reaction of Amides with Aldehydes or Ketones Secondary amides combine with aldehydes or ketones to provide α -hydroxyalkyl derivatives, which can form the corresponding N-acyliminium ions on treatment with acid. In some cases, dehydration to an N-acyl enamine ("enamide") may take place, but that species can also cyclize effectively (e.g., eq 7).⁴⁵ This protocol is very versatile, especially for intramolecular systems, with the aldehyde or ketone entities being generated in a myriad of ways. Examples of secondary amide/aldehyde cyclizations are shown in eqs 13, 16, 18–20, and 36, 31,89,95,100,104,105,144,146,149 and examples of secondary amide/ketone cyclizations are shown in eqs 4, 7, 10, and 11. 23,26,27,45,52 Reactive aldehydes, such as formaldehyde or ethyl glyoxylate, can combine with secondary amides that bear a suitable nucleophile, under acidic conditions, to furnish cyclized products directly. 15 This reaction is featured in several tetrahydroisoquinoline syntheses²⁹²⁻²⁹⁷ (e.g., eq 66²⁹⁴). Primary amides react with aldehydes or ketones (or their equivalents) to form *N*-acylimines, which can then be converted to *N*-acyliminium ions by reaction at nitrogen with a suitable electrophile, particularly with protons. This approach has been applied to the synthesis of five- and six-membered lactams (e.g., eqs 67 and 68). ^{298–301} Depending on the acidic reagent employed, a different product is obtained due to a mechanistic divergence. More commonly, N-acylimines are generated from the primary amide and a highly reactive aldehyde, such as formaldehyde or ethyl glyoxylate. 14,15 However, this method is more generally applicable to cyclic systems since acyclic Nacylimines tend to hydrolyze to the amide and aldehyde. A valuable method for obtaining stable adducts, such as RCH(OTMS)NHCHO, is based on the condensation of aldehydes with bis-trimethylsilylformamide, 302 and these reagents undergo smooth N-acyliminium cyclization when a reactive nucleophile is present. 303,304 This protocol proved to be especially effective in the synthesis of pavine alkaloids (e.g., eq 69³⁰⁴).³⁰⁵ Another useful procedure involves primary sulfonamides and aldehydes, whereby intermediate *N*-sulfonylimines readily cyclize onto reactive nucleophiles (eq 70).³⁰⁶ ## 3.1.2. Addition of Nucleophiles to Imides^{15,17,19,290} Perhaps the most successful and versatile technique for obtaining N-acyliminium ion precursors has been selective addition of hydride to one carbonyl of a cyclic imide. ^{15,307a} Although lactam diastereomers arising from the new stereocenter (at the ω position) are often encountered, this is inconsequential to the cyclization reaction. Various methods are available to perform this conversion without overreduction or reductive ring opening. The most common procedures are (1) sodium borohydride in ethanol with a strong protic acid (e.g., HCl or MeSO₃H) at ca. 0 °C, (2) sodium borohydride in methanol between -20 and 0°C, and (3) diisobutylaluminum hydride in toluene from -78 to -20 °C. When using sodium borohydride, the specific conditions are important to avoid reductive ring opening. Other hydride reagents, such as lithium triethylborohydride and sodium bis(2-methoxyethoxy) aluminum hydride, are also quite effective. It is especially noteworthy that the reaction of unsymmetrically substituted cyclic imides with sodium borohydride usually proceeds with high regiochemical control, such that reduction of the *sterically* more hindered imide carbonyl is strongly preferred. 15,17,307b As a complement, reduction of unsymmetrically substituted cyclic imides with diisobutylaluminum hydride favors the less substituted carbonyl group. 15,17 For imides having both exocyclic and endocyclic carbonyls, such as N-acylpyrrolidin-2-ones, there can be problems from overreduction and a lack of regiochemical control, with the products being dependent on the particular substituents involved. 308 Organometallic reagents can add selectively to imides to give *N*-acyliminium ion precursors with a tertiary reactive center. Grignard and lithium reagents are useful, but care should to be exercised to avoid overaddition. ^{15,19,290} An example of an organolithium addition is shown in eq 65. ²⁹¹ With unsymmetrically substituted cyclic imides, Grignard reagents usually add preferentially to the sterically less hindered imide carbonyl. A titanium-mediated intramolecular addition of alkenes to imides, via Kulinkovich titana-cyclopropane intermediates, shows considerable promise. ^{309–311} (Also, see the related Wittig and Tebbe olefinations mentioned in the next paragraph.) #### 3.1.3. N-Acyl Enamines (Enamides) Enamides can be formed by elimination of water or an alkanol from certain ω -hydroxy or ω -alkoxy lactams (e.g., viz. eqs 7 and 8). It is not uncommon to find this intermediate stage in the thermal condensation of primary amines with aldehydo and keto acids, and their derivatives, especially for the keto case (e.g., eq 7). 45,93,312 Enamides can also result from other types of cyclization³¹³ or azide elimination.^{314,315} Other chemical approaches provide enamide-type *N*-acyliminium ion precursors, such as *N*-acylation of enamines^{68,81,108-110} (eqs 21 and 22⁹³⁻⁹⁵) or imines, 316,317 alkaline ferricyanide oxidation of isoquinolinium salts, 318,319 Wittig olefination of imides 316,320,321 (e.g., eqs 71³²¹ and 72³¹⁶), and Tebbe olefination of imides (eq 73³²²). As a general rule, such enamides are competent cyclization participants; however, rare exceptions exist where enamides cyclize with difficulty, or not at all. Besides being commonly cyclized by protonation, enamides can be activated by other electrophilic reactions, such as halogenation or epoxidation. 15,290 #### 3.1.4. Oxidation of Amides at the Carbon α to Nitrogen Electrochemical oxidation at the carbon α to the
nitrogen of amides is a versatile method for obtaining N-acyliminium ion precursors for cyclization. 323,324 A representative example is presented in eq 74. Variable results may be encountered due to the formation of oxidative byproducts.^{325,326} O Me O Me $$CO_2Me$$ CO_2Me CO_2 Chemical oxidation has also been used. 15,19,290 This method, when undirected by specific functionality, may be accompanied by problems of regiocontrol and overreaction. An interesting method is the oxidation of N-acylpyrrolidines or N-acylpiperidines with iodosylbenzene and trimethylsilyl azide to produce 2-azido derivatives, which can serve as N-acyliminium ion precursors.^{314,315} However, there are some limitations with this procedure because of the formation of side products in the oxidation (isomers and double substitution) and in the N-acyliminium cyclization. A radical-based method entails diazotization of 2-aminobenzamides (in the presence of a catalytic amount of CuCl) and subsequent hydrogenatom abstraction. 327–329 Silicon can be used to promote oxidation at a specific site, and the intermediate *N*-acyliminium ions may cyclize in situ if a reactive π -nucleophile is present. ^{177,330,331} A good example of this tandem sequence is the cerium(IV) oxidation of N-trimethylsilylmethylamide **223**, which leads directly to an efficient cyclization onto the indole 2-position (eq 75).320 #### 3.1.5. Decarboxylation of α -Amido Acids²⁹⁰ A related method involves the oxidative removal of a carboxylic acid group from an α -amido acid to $$\begin{array}{c} Me_{3}Si & NCO_{2}CH_{2}Ph \\ & CAN \\ McCN \\ \hline & 6h \\ & NCO_{2}CH_{2}Ph \\ & SO_{2}Ph \\ & SO_{2}Ph \\ & CAN = certum(IV) ammonium nitrate \end{array}$$ (75) produce an N-acyliminium ion, which is usually trapped as a heteroatom adduct for subsequent use. A recent procedure is based on hypervalent iodine reagents in conjunction with iodine: PhIO/I₂ or PhI- $(OAc)_2/I_2$. 332,333 There are also useful electrochemical oxidative decarboxylation methods. $^{334-336}$ A representative example of anodic oxidation and cyclization is illustrated in eq 76. 336 α -Amido acid chlorides easily decompose to N-acyliminium ions, which can then cyclize (e.g., eq 77), 337 even though the corresponding 5-methoxypyrrolidin-2-ones fail to cyclize, probably because of side reactions. 337 ON CO₂H $$\xrightarrow{\text{2e, NaOAe}}$$ ON OAe $\xrightarrow{\text{TiCl}_4}$ CO₂Me $\xrightarrow{\text{CO}_2\text{Me}}$ OCO₂Me $\xrightarrow{\text{CO}_2\text{Me}}$ OCO₂Me $\xrightarrow{\text{CO}_2\text{Me}}$ CO₂Me $\xrightarrow{\text{CO}_2\text{Me}}$ CO₂Me $\xrightarrow{\text{CO}_2\text{Me}}$ (76) $\xrightarrow{\text{CO}_2\text{Me}}$ (86% at 2.0 F/mol) (77) #### 3.1.6. Acylation of N-Substituted Imines¹⁵ Perhaps the most direct route to N-acyliminium ion species is through acylation of N-alkyl- or N-arylimines. $^{15,338-340}$ The adducts formed may isomerize to enamides on exposure to moderate bases, such as triethylamine. Two different approaches for executing this reaction are illustrated in eqs 78^{338} and 79^{339} . Some special types of N-acyliminium cyclizations are dependent on this method. Imines react with cyclic anhydrides to yield cyclocondensation products via intermediate N-acyliminium species (e.g., eq $58)^{227,244-276}$ and with activated carboxylic acids in a Staudinger reaction (formal [2+2] cycloaddition) to yield β -lactams (viz. eq 63). $^{20,277-279}$ #### 3.1.7. Cycloaddition and Cyclization Reactions A very interesting and useful approach to *N*-acyliminium ion precursors involves dipolar cyclo-additions, Diels-Alder cycloadditions, or cationic cyclizations. ^{88,341,342} For the purpose of illustration, each type of reaction will be briefly discussed. The first entails a tandem carbenoid cyclization/1,3-dipolar cycloaddition (eq 80). 83.86 On treatment with a catalytic quantity of the rhodium(II) catalyst, the diazo compound **224** yields isomünchnone intermediate **225**, which then undergoes intramolecular dipolar cycloaddition. The resulting polycyclic *N*-acyliminium ion precursor **226** (98% yield) readily cyclizes to **227** under mild Lewis acid catalysis. (A homologous cyclization is shown in eq 12.83,86) A tandem Pummerer cyclization/Diels—Alder cycloaddition/acyliminium cyclization leads to related erythrinane derivatives (e.g., eq 81).^{85,87} Sulfoxide **228** is easily converted to homoerythrinane **229** (64% yield) via intramolecular Diels—Alder cycloaddition of amidofuran **230** and cyclization of the *N*-acyliminium precursor **231** (isolated and characterized). Thiacarbenium (or thionium) ions from the Pummerer reaction and other processes, such as dithioacetal dissociation, can provide different *N*-acyliminium ions (e.g., **232** and **233**) for synthetically useful cyclizations (eqs 82 and 83). $^{343-346}$ #### 3.2. Reactions of Benzenoid Nucleophiles *N*-Acyliminium cyclizations have been widely applied to aromatic nucleophiles.^{11–19,290} Unactivated benzene rings, as well as benzene rings substituted with moderate deactivating groups (e.g., fluoro¹¹⁸), can participate effectively. At the outset of this section, we will present various examples of erythrinane syntheses as a platform to illustrate the utility of benzenoid reactions. #### 3.2.1. Synthesis of Erythrinanes The earliest *N*-acyliminium ion cyclizations of benzene nucleophiles exist in the syntheses of *Eryth*- rina isoquinoline alkaloids.21-26 Belleau demonstrated the advantage of an N-acyliminium variant of the Mannich reaction in the synthesis of erythrinane 5 (cf. eqs 3 and 4).²³ The effective Belleau-type $(eq 4)^{23}$ and Mondon-type $(eq 11)^{26,27,32}$ modes of cyclization differ by the position of the lactam carbonyl, but both modes supply the cis-fused perhydroindole configuration. These two routes work smoothly with methoxy-activated or unactivated benzene rings and tolerate various substituents on the aliphatic skeleton. In the Mondon-type cyclization, relatively mild cyclization conditions are sufficient with a 3,4-dimethoxyphenyl nucleophile (e.g., eq 11).^{26,27} In fact, it is possible to convert **234** to **29** in 75% yield by using 1 N aqueous ethanolic HCl at room temperature (for 2 days).32 Such a facile ring closure under mild conditions is relatively common when dealing with electron-rich arenes; for example, **235** readily gives **236** with 10% sulfuric acid (eq 84), 65 **30** gives **31** with boron trifluoride etherate (eq 12), 83,86 and 237 gives 238 with ethanolic HCl at reflux in just 10 min (80-90% yield).45 For less reactive nucleophiles, more strenuous conditions are needed, such as polyphosphoric acid at 100-135 °C for 12-24 h (e.g., eq 7).45,66 Tsuda and co-workers examined erythrinane-based cyclizations of benzenoid nucleophiles ranging from phenyl to trimethoxyphenyl to hydroxyphenyl, as well as heterocyclic species, under a variety of conditions. $^{68-70,75-77,80,82}$ Of particular note is the conversion of **239** to **240** (eq 85), $^{68-70,80}$ in which quantitative yields are obtained with polyphosphoric ester (PPE) at 90 °C in 1.5 h, boron trifluoride etherate at 23 °C in 3 h, or AgClO₄ in benzene at 80 °C for 0.5 h. 68,80 The use of 10% HCl in methanol at reflux is not effective in this case. Substrates with a five-membered (**241a**) or seven-membered (**241b**) ene-containing ring also cyclize well (100% H₃PO₄, 25–50 °C, 1–2 h). However, the length of the linker to the aromatic nucleophile is critical in that closure of a seven-membered ring to give **242** proceeds poorly (eq 86). 80 Derivatives with acid-sensitive moieties, such as a free hydroxyl or a ketal, give excellent results with boron trifluoride etherate (e.g., eq 87).^{80,81} Another N-acyliminium cyclization that tolerates an acid-sensitive tertiary hydroxyl, if the reaction is performed carefully, is depicted in eq 88. 59 Although boron trifluoride conditions seem to be optimal with sensitive groups, they are not always trouble-free. The glyoxylate approach to erythrinanes highlights a worthwhile synthetic protocol (e.g., $\bf 243 \rightarrow \bf 244$). 60,347,348 The cyclizations of $\bf 243a$ and $\bf 243b$ with $\bf H_3PO_4$ –MeOH– $\bf H_2O$ at reflux give $\bf 244a$ (87% yield) and $\bf 244b$ (74% yield). 347 However, benzyloxy substrate $\bf 243c$ not only cyclizes but also experiences ether ring closure and debenzylation to give polycyclic hemiketal $\bf 245$, a transformation that is enhanced by using a phosphoric acid/formic acid mixture (61% yield). 60 In the case of ketal $\bf 246$, cyclization to $\bf 247$ fails because aromatized oxindole $\bf 248$ is produced. However, a strategically placed carbethoxy substituent can prevent such aromatization (eq 87).⁸⁰ #### 3.2.2. Tandem Reactions The first tandem reaction sequence reported was a Pummerer cyclization/*N*-acyliminium ion cyclization to yield erythrinanes, such as that starting with **249** (eq 89^{72,73}). ^{72–74,78,79} The analogous reaction with S(O)Me $$p$$ -TsOH Cl(Cl1₂)₂ DMP p -TsOH Cl(Cl1₂)₂ p -TsOH enone **250**, however, is not so straightforward. Under *p*-toluenesulfonic acid conditions, **250** only yields intermediate indolinedione **251**, which has difficulty cyclizing to erythrinane **252** because of the vinylogous amide conjugation.⁷⁴ This problem can be surmounted by using 85% phosphoric acid (80 °C, 2 h) to yield a mixture of desired **252** (53%) and byproduct **253** (15%).³⁴⁹ Elimination product **253** is formed predominantly when 99% formic acid is used (reflux, 20 h).⁷⁴ By contrast, treatment of **254** with formic acid (100 °C, 20 h) does not yield any homoerythrinane product **257**; rather, **255** (47%) and **256** (16%) O S(O)Me $$MeO$$ MeO M are obtained instead. Formation of a seven-membered ring via an N-acyliminium cyclization can be problematic, as with the reaction in eq 86. In a similar vein, the trimethylene analogue of
the reaction in eq 89 does not give any homoerythrinane 258. Tandem routes to erythrinane derivatives involving Pummerer cyclization, Diels—Alder cycloaddition, and N-acyliminium ion cyclization may be burdened by variable results.^{85,87} Unlike the smooth transformation in eq 81, the reaction of **259** is complicated. Treatment of **259** with acetic anhydride, followed by *p*-toluenesulfonic acid (xylenes, reflux), produces benzindolinone **260** instead of erythrinane **261**. 85,87 Thus, a bridgehead substituent in the intermediate *N*-acyliminium ion precursor (viz. **231**) is crucial. A successful *N*-acyliminium cyclization also requires a suitably activated aromatic ring. In fact, no erythrinane products are isolated when the substrate contains a plain benzene ring (eq 90). The practicality of this tandem method was effectively realized in a triple-cascade process en route to erysotramidine.⁸⁷ A key step in the conversion of **262** to **265** involves *N*-acyliminium ion **263**, which, prior to cyclization, undergoes a 1,2-shift of the ethylthio group and expulsion of methoxide, as delineated in **264** (eq 91). $$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{Et(O)S} \\ \text{MeO} \\ \text{O} \text$$ Thiacarbenium ions from the Pummerer reaction, or from dithioacetal dissociation, can initiate diverse N-acyliminium ion cyclizations (eqs 82 and 83). $^{343-346}$ In secondary amide reactions, as in eq 83, an intermediate thioaminal (ω -thioalkoxylactam) is generated in situ as an N-acyliminium ion precursor. In related reactions, **266** affords berberine **267** via enamide intermediate **268** (t-BuMe₂SiOC(OMe)=CH₂ and ZnI₂, then "acidic conditions"; 47% overall yield), and **269** affords erythrinane **29** (Me₂SSMe⁺BF₄ $^-$, CH₂Cl₂, reflux, 12 h; 71% yield). 343,345 Although orthothioesters **270** and **271** do not cyclize with Me₂SSMe⁺BF₄⁻, dimethyl sulfate successfully provides **272** (46%) and **273** (71%), respectively.³⁴⁵ The tandem thionium/N-acyliminium reaction is useful for preparing polycyclic lactams with good stereochemical control (e.g., eqs 92 and 93).³⁴⁴ In a sequential cycloaddition/*N*-acyliminium ion cyclization process, dipolar reactants (isomünchnones), generated from diazo ketones by rhodium-(II) catalysis, undergo intramolecular dipolar cycloaddition to yield oxabicyclic species, which constitute masked *N*-acyliminium ions. ^{83,86,88,350} A representative example is shown in eq 80. This reaction works well with a less reactive 3-methoxyphenyl group (eq 94). ³⁵⁰ The high regiocontrol here contrasts with other *N*-acyliminium ion cyclizations of 3-methoxybenzene-containing substrates. ^{325,351,352} #### 3.2.3. Effect of Substituents on the Iminium Ion In *N*-acyliminium ion cyclizations, the nature of the substituent on the carbon or nitrogen of the iminium unit normally does not greatly impact the reaction outcome. ^{15,19,45,290} However, there are instances in which significant effects do occur. More reactive *N*-acyliminium species, such as those bearing electron-withdrawing groups on the carbon atom, those devoid of steric hindrance at the carbon atom, or those with more electron-deficient *N*-acyl groups, may lead to higher yields and/or allow for milder conditions. With respect to carbon substitution, difficulties arise with conjugated carbon—carbon double or triple bonds, which result in reduced yields.^{291,353} With standard substituents, such as phenyl or hydrogen, there are cases of differential reactivity, especially with ring strain in the cyclization. For certain hydroxyisoindolinones, disparate reactivity for phenyl vs hydrogen exists, in that the phenyl case succeeds and the hydrogen case fails.^{354,355} For example, although **274** gives **275** in good yield, **276** reacts poorly.³⁵⁴ Similarly, whereas **277** cyclizes in PPA at 135 °C to **278** in 72% yield, **279** fails to give **280**.³⁵⁵ Since the corresponding cyclizations to six-membered rings supply good yields irrespective of the phenyl or hydrogen group, 354 this substituent effect is apparently accentuated by ring strain during formation of the five-membered ring. 356,357 With a trifluoromethyl group on the iminium carbon, which boosts electrophilicity, high yields are observed. 358 For example, the cyclization of **281** furnishes a 100% yield of pyrroloisoquinolines **282/283**, even though the arene nucleophile is a less reactive chlorophenyl group (eq 95). HO CF₃ $$CF_{3}SO_{3}H$$ $$CI_{2}CI_{2}$$ $$281$$ $$CI_{3}CI_{2}CI_{2}$$ $$282 X = CI, Y = H$$ $$283 X = II; Y = CI$$ $$(100\%; 282/283 = 9:1)$$ $$(95)$$ The generation of N-acyliminium ions with formaldehyde or glyoxylate can be very useful, especially for cyclizations of unactivated arene nucleophiles. In reactions with formaldehyde, it is important to have appropriate conditions to avoid potential side reactions. This issue surfaces with N-hydroxymethylphenylacetamides **284** and **285**, 359 in that **284** reacts with pyrophosphoric acid at 140-160 °C to give a 76% yield of **286**, whereas **285** reacts with pyrophosphoric acid at 100 °C to give **287** (13%) and dimeric macrocycle **288** (16%). At 23 °C, **284** yields only intractable polymeric material and **285** yields a much higher proportion of undesired **288** (up to 93%). In another case, phenylacetamide **289** reacts with paraformaldehyde in formic acid to yield isochromanone **290** (preemptive hydroxymethylation on the arene) rather than isoquinolinone **291** via an N-acyliminium cyclization. ^{296,360} Alternatively, α, α -disubstituted phenylacetamides cyclize by the desired N-acyliminium route, as exemplified in eq 96. ²⁹⁶ In general, side reactions can be minimized by employing preformed N-hydroxymethylcarboxamide substrates. Glyoxylate-type N-acyliminium ions are very effective because they cyclize under relatively mild conditions, 166,361,362 as exemplified in eqs 97^{361} and $98.^{362}$ The effect of diverse *N*-acyl groups on *N*-acyliminium ion cyclizations has been assessed in the reactions of **292a** or **292b** (eq 99).³⁶³ For the less reactive phenyl substrate, **292a**, the electron-deficient dichlo- roacetyl group supplies the highest yield of tetrahydroisoquinoline **293a** (75%), and acetyl supplies the lowest yield (25%). For the more reactive dimethoxyphenyl substrate, **292b**, yields of **293b** are in the range of 52–80%, with methoxycarbonyl being optimal. Results in a related study with benzaldimines are comparable to these. ³⁶⁴ *N*-Formyliminium ions have proven to be synthetically versatile. ^{293–295} The ring closure of **294** and **295** with formaldehyde leads to **296** (57%) and **297** (73%), with a higher yield for the more reactive aromatic nucleophile. ²⁹³ Tetrahy- droisoquinolines are also obtained in good yields from the reaction of **294** with acetaldehyde (52%) or benzaldehyde (48%); however, the more reactive **295** results in higher yields (66% and 59%, respectively). 293 The N-formyliminium ion reaction is favored for the synthesis of 3-aryltetrahydroisoquinolines (e.g., eq 66) because it eschews a problem with elimination to stilbenes under harsh conditions; in fact, yields are generally good to excellent (>70%). 294,295 Another advantage is the tolerance for electron-rich 3-aryl substituents and bulky quaternary formamides, such as PhCH₂CMe(Ph)NHCHO. 294,295 Similarly, N-sulfonyliminium ion cyclizations effectively provide tetrahydroisoquinolines. $^{365-367}$ A special version of the N-formyliminium ion cyclization is depicted in eq 69, 304 wherein bis-aldehyde adducts of formamide, masked as trimethylsilyl ethers, double cyclize with good yields to generate the azabicyclic pavine alkaloid skeleton. 304 #### 3.2.4. Competition between Carbon Nucleophiles The cyclization of phenylacetamide **298** is interesting because the alkene group competes favorably with the dimethoxyphenyl group to yield azepinone **299** in 78% yield, with only a trace of the isoquinolinone. Surprisingly, carbamate reactants **300** and **301** react in the opposite manner to give solely isoquinolinone products **302** (84% yield)²⁹⁶ and **303** (63% yield; sole isomer), respectively. Conformation tional effects on the cyclization geometry, by virtue of the N-acyliminium carbonyl being inside or outside the newly formed ring, may be responsible for this dichotomy of reactivity. A notable example of competition between arene and alkene π -nucleophiles is the cyclization of 304, which has an unusual dependency of product ratios on cyclization conditions. Treatment of 304 with trifluoroacetic acid gives a mixture of tetrahydroisoquinoline 305 (probably a single isomer) and spirocyclic compounds 306/307, due to attack on the arene and allylsilane. However, when mesyl chloride and triethylamine are used, only the allylsilane unit reacts to give 306/307 (71% yield; 1:1 ratio). In a case of competition between phenyl and thiophene π -nucleophiles, the cyclization of **308** with trifluoroacetic acid occurred exclusively on the phenyl ring to form a new seven-membered ring (80% yield), rather than on the thiophene ring (at the 4-position) to form a new five-membered ring.³⁶⁹ This result reflects the difficulty in forming a new five-membered ring, especially for a 5,5-fused product (vide infra).³⁷⁰ In competition between phenyl and keto/enol groups, as in the aluminum(III) chloride-promoted reaction of adducts from N-phenylbenzaldimines and arylacetyl chlorides (i.e., α -chloro amides), 371 electron-rich aryl groups tend to yield N-phenyl-1-aryltetrahydroisoquinolin-3-ones via the N-acyliminium ion cyclization. However, other aryl groups tend to yield N-phenyl- β -lactams via the Staudinger reaction. 371 Related results arise in cyclizations of N-sulfonyliminium ions to benzothiazine 2,2-dioxides. 372 ## 3.2.5. Formation of Five-Membered and Seven-Membered Rings The formation of five-membered
rings by *N*-acyliminium ion cyclization onto arenes can be problematic. For example, as mentioned above, **274** and **277** produce **275** and **278** in good yield, but **276** and **279** react quite poorly. The corresponding cyclizations to six-membered rings occur with good yields for both phenyl and hydrogen substitution. The difficulty in forming five-membered rings is also illustrated by the failure of **309** and **310** to cyclize under various acidic conditions, The area well as the propensity of **308** to cyclize to a seven-membered-ring product instead of a five-membered-ring product. On the other hand, five-membered rings are formed more readily from spirocyclization (e.g., eq 100^{374}) and from the cyclization of *N*-arylgly-cinamide-based ions to 3-aminoindolin-2-ones. HO $$CH_2CH_2Ph$$ N-Me CF_5CO_2H reflux O Me (69%) Formation of seven-membered rings in arene cyclizations can be troublesome, ^{72,77,78,313} but there are several successful examples, ^{118,330,369,377–390} two of which are the cyclization of **308**³⁶⁹ and the reaction in eq 27. ¹¹⁸ Excellent results are obtained for the conversion of enantiomerically pure **311a** to benzazepine **312** with PPA, methanesulfonic acid, triflic acid, or trimethylsilyl triflate (80–94% yield), although stereoisomerization takes place at the phthalimide-bearing carbon.³⁷⁸ However, there is just 10% epimerization in the cyclization of **311b** to benzazepine **313** with triflic acid (96% yield), 380 and presumably no stereoisomerization in the cyclization of **314** to **315a** and **315b** with triflic acid (75% yield; 10:1 mixture). 378 Some other notable examples of seven-memberedring generation follow. (1) A series of benzazepinones is obtained from (dimethoxyphenyl)propanamide and benzaldehydes (R=Ph and DMP) in good yields, although formaldehyde (R=H) causes difficulties (eq 101). 388 (2) Azepinoindoles can be efficiently pre- $$\begin{array}{ccc} O & & & & & & & & & & & \\ DMP & & & & & & & & & & \\ NH_2 & & & & & & & & & \\ R = Ph, DMP, H, Me \end{array}$$ (101) pared, $^{381-383}$ as exemplified in eq $102.^{383}$ It is interesting that enamide $\bf 316$, as the Z or E isomer, cyclizes exclusively at the indole 4-position to give the azepinoindole, even though the reactive indole 2-position is available for six-membered-ring formation (eq 102). 383 The unusual nature of this regiochemistry is underscored by the fact that the tryptophan analogue of $\bf 316$ (double bond is saturated) cyclizes only at the 2-position to give a β -carboline derivative. (3) Benzodiazepines and benzothiazepines can be efficiently prepared (eqs 103 and 104), 384 with the former reaction being unusual because the necessary acid catalyst, HBr, is produced from bromide displacement by the amine. #### 3.2.6. Enantiospecific Synthesis Numerous *N*-acyliminium ion cyclizations of non-racemic substrates afford enantiomerically enriched products. ^{117,118,320,321,381,391–399} Two examples of diastereoselective, enantiospecific conversions are shown in eqs 105³⁹¹ and 106, ³⁹⁶ while some others are noted in eqs 26, ¹¹⁷ 27, ¹¹⁸ and 71. ^{320,321} Benzyl urethane Ph HO N O $$\xrightarrow{BF_3 \cdot El_2O}$$ $\xrightarrow{CH_2Cl_2, 2 \text{ d}}$ \xrightarrow{H} N O (105) **317a**, with an electron-rich 3,4-dimethoxyphenyl group, cyclizes exclusively to **318** in 94% yield with >95% enantiomeric purity (BF₃·Et₂O, MeCN, -78 to -10 °C). ³⁹⁷ The arene adds from the less hindered face of the *N*-acyliminium ion, and the high enantiomeric purity indicates an absence of racemization via an enamide intermediate. Cyclization of phenyl analogue **317b** is unsuccessful,³⁹⁷ possibly because the urethane group competes for the *N*-acyliminium ion in the absence of a suitably nucleophilic arene, as in the conversion of *tert*-butyl urethane **319** to **320** instead of **321** (with $TiCl_4$).³⁹⁴ ### 3.2.7. Bicyclic Bridgehead Iminium Ions Cyclic keto amide **322** cyclizes with HF to polycycle **323** in 70% yield.⁵⁰ This reaction is impressive because it creates considerable molecular complexity in a single step and involves a bicyclic bridgehead *N*-acyliminium ion, **18**, in which stabilization of the cation by the amide nitrogen is stereoelectronically disfavored according to Bredt's rule. Therefore, this N-acyliminium ion is likely to possess extraordinary reactivity. In a similar vein, the cyclization of azahomoadamantane **324** produces polycyclic quinazoline **325** in 79% isolated yield (eq 107) via bicyclic bridgehead N-acyliminium ion **19**. 51 #### 3.2.8. Cyclic Ions Containing Additional Heteroatoms There is a large body of practical synthetic chemistry involving cyclic N-acyliminium ions that contain additional heteroatoms. ^{400–434} A notable example is the hydantoin-based N-acyliminium ion cyclization illustrated in eq 108. ⁴⁰⁰ In the bromination of the Ar $$(1)$$ Br₂, HOAe, Ac₂O, HBr (2) T $(2, 2h)$ (2) SnCl₄, CHCl₃ (2) (2) SnCl₄, CHCl₃ (2) (2) (2) (3) (3) (4) $(4$ 5-phenyl derivative **326** (n=2), the tricyclic product **327** forms spontaneously in 90% yield; there is no need for a Lewis acid such as tin(IV) chloride to generate the requisite N-acyliminium ion. However, no tricyclic products are obtained from **326** (n=1) or **326** (n=3) either with or without the agency of tin(IV) chloride. It is possible to close a sevenmembered ring to obtain tricyclic compounds, such as in the production of **329** from **328** in modest yield $(CF_3CO_2H, trifluoroacetic anhydride).$ the formation of a five-membered ring is difficult, as can be appreciated by the failure of **330** to cyclize even though an activating methoxy substituent is present. There is a similar dichotomy with respect to ring size in the cyclization of imidazolidin-2-ones **331** (n=3) and **331** (n=1), with the former supplying **332** in 68% yield and the latter failing. The successful cyclization of imidazolidin-2-ones demands the absence of a hydrogen at the 4-position; otherwise, dehydrative elimination occurs to give imidazolin-2-ones, which fail to participate in the N-acyliminium ion cyclization. One fail to participate in the successful cyclization of analogous pyrimidin-2-ones (e.g., eq 109). Piperazinones cyclize to isoquinoline tricycles generally with excellent yields. 404,407–410 For instance, treatment of **333** with 12 N HCl at 0 °C affords the drug praziquantel, **334**, in 95% yield. ⁴⁰⁷ An unprotected nitrogen is well tolerated in this type of cyclization (eq 110). ⁴⁰⁸ It is also possible to obtain **334** Ar $$\frac{11,80}{\text{MeO}}$$ $\frac{11,80}{5 \, {}^{\circ}\text{C}, 3.5 \, \text{h}}$ $\frac{R'}{N}$ $\frac{N}{N}$ $\frac{$ from ene diamide **335** in quantitative yield with concentrated sulfuric acid and from **336** with methanesulfonic acid (73% yield). 409 Interestingly, although **335** can lead to two different N-acyliminium ions on protonation of the alkene, only a single reaction path transpires, that to **334**; no alternative bridged product **337** is formed. In considering such dual reactivity, it is remarkable that **338** cyclizes exclusively to diazabicyclo[3.3.1]nonane **339** in 100% yield (trifluoroacetic acid) via the N-carbamoyliminium ion, with no diazabicyclo[3.2.2]nonane **340** being formed. 410 A double-cyclization protocol has surfaced as an important synthetic tool for obtaining the 3,9-diazabicyclo[3.3.1]nonane system, which is present in several complex bis-isoquinoline alkaloids, such as saframycin, ecteinascidin, and phthalascidin. $^{411-426}$ In this process, steric issues can become quite critical. Two different, direct approaches to the right-hand portion of saframycin are depicted in eqs 111^{411} and $112.^{412}$ In the latter case, the $N\!\!$ -acyliminium cyclization of 341 gives a single product, 343, in good yield despite the necessity for 341 to isomerize via proto- nation—deprotonation, such that only the Z isomer **342** is converted. Under the same conditions, **344** does not cyclize to the
3,9-diazabicyclo[3.3.1]nonane, whereas the corresponding *trans* isomer does, because of a significant steric effect.⁴¹² Steric factors arise in the conversion of **345** to **346**, wherein the unnatural C2 stereochemistry is obtained (eq 113).⁴²⁶ (This stereochemical inversion probably results from iminium—enamine equilibration.⁴²⁶) Stereomutation also occurs in the cyclization of **347** to **348** with trifluoroacetic acid (51% yield). 421 The power of this double-cyclization method is beautifully expressed in Corey's enantioselective total syntheses of ecteinascidin 743 (e.g., eq 114). 417,425 Related *N*-acyliminium ion cyclizations have been applied to the 9-azabicyclo[3.3.1]nonane system, a hallmark of the pavine alkaloids.^{304,305} For example, argemonine derivatives are obtained via single-cyclization (eq 115)³⁰⁵ and double-cyclization methods (eq 69).³⁰⁴ Additionally, an *N*-acylhydrazonium ion cyclization of pyrazin-3-one substrates 427 yields 1,8-diazabicyclo[3.2.1]octanes in high yields (e.g., eq 116). 205,428 $N\text{-}Acyliminium ions based on oxazolidin-2-ones 119,120,121,291,368,398,404 and thiazolidin-2-ones $^{148,291,429-433}$ cyclize in fairly standard fashion. A thiazolidinone example is represented by the quantitative conversion of 49 to 350 with formic acid. 429 and the standard fashion of 450 $450$$ It is important to note that there is no cyclization in the absence of *gem*-dimethyl substitution because of dehydration to an unreactive 1,3-thiazolin-2-one (enamide). With *N*-acyliminium ions based on a dimethyl-1,3-thiazolin-2-one subunit, one can form normally difficult five-membered rings in high yields, although a very reactive 3,4,5-trimethoxyphenyl group is required (e.g., eq 117⁴²⁹). 156,429 Sulfur-containing N-acyliminium ions are integral to a useful one-pot bicycloannulation procedure (eq 118). 430,431 A secondary thioamide reacts with bromoacetyl chloride to generate a 1,3-thiazolinium-4- one, an *N*-acyliminium ion that attacks a tethered nucleophile to yield a polycyclic 1,3-thiazolidin-4-one product. With a less reactive arene, such as phenyl, a Lewis acid catalyst like aluminum(III) chloride is needed, and the yield suffers.⁴³¹ For example, a one-pot cyclization of the phenyl analogue of **351** gives the bis-desmethoxy product in 31% yield. An intriguing *N*-acyliminium cyclization is found in the treatment of **352** with potassium diphenylphosphide, which yields polycycle **353** (eq 119). ⁴³⁴ This reaction probably proceeds as follows: the phosphide adds to the imide to generate a transient α -oxidophosphine, which is rapidly trapped by intramolecular alkylation on oxygen to give an oxazolidine intermediate that dissociates to a cyclic alkoxy N-acyliminium species, which cyclizes onto the phenyl group to give **353**. The high yield of **353** is remarkable, especially given the absence of acidic reagents. #### 3.3. Reactions of Heterocyclic Nucleophiles For the most part, N-acyliminium ion cyclizations of heterocyclic nucleophiles mirror the reactions of benzenoid nucleophiles. π -Rich heterocycles like furan, pyrrole, and indole are at the higher end of the reactivity spectrum, comparable to a phenyl bearing one or two methoxy substituents. The reactivities of π -deficient heterocycles, such as pyridine, are significantly attenuated. Given the similarity of N-acyliminium ion cyclizations of heterocyclic and benzenoid nucleophiles, we will emphasize the more interesting features and distinct differences. #### 3.3.1. Furans and Thiophenes Although several examples of N-acyliminium cyclizations with furan $^{68,80,435-437}$ or thiophene $^{45,66,115,119-121,321,354,358,370,406,438-443}$ nucleophiles exist, this area is much less developed than that of benzenoid nucleophiles. These π -rich heterocycles show reasonable reactivity, behaving more or less like activated benzene systems. In comparing reactions of similar substrates with thiophene and phenyl nucleophiles, it is found that thiophene is more reactive when its α position is involved. Regiochemistry can be a significant issue for cyclizations of furan or thiophene when the heterocycle is linked to an *N*-acyliminium segment by its 3-position, although attack at the 2-position would normally predominate over attack at the 4-position. Examples that address comparative reactivity and regiochemistry will be mentioned. Thiophene cyclizations are usually straightforward, with reaction being favored at the α position. On treatment of thiazolidin-2-ones 354a and 354b with trifluoroacetic acid, seven-membered-ring products **355a** and **355b** are obtained in ca. 60% yield. 442 In this case, formic acid is not useful because it leads to dehydration products (thiazolin-2-ones) that do not cyclize. Contrary to the reactivity of 354a, imidazolidin-2-one **356a** just yields the dimeric product **357**, a thiophene-metacyclophane. 442 By blocking the thiophene 5-position, it is possible to prepare 358 from **356b** in 55% yield. When the thiophene 2-position is available, cyclization readily occurs at that site, regiospecifically (eq 120).⁴⁴¹ A seven-memberedring product is also accessible by cyclization of a benzothiophene (eq 121).441 A comparison between $$(CH_{2})_{3} \xrightarrow{CF_{3}CO_{2}H} (DH_{2})_{3 \text{ h}} (DH_{2})_{Me} (DH_{2}$$ 2-thienyl and phenyl in seven-membered-ring formation reflects the greater reactivity of thiophene. 439 For example, the reaction of **359a** (thiophene case) proceeds in trifluoroacetic acid at 23 °C to 360 in 99% yield, whereas 359b (phenyl case) does not react; however, **359b** does cyclize to **361** in high yield at 73 °C. It is interesting that different diastereomers are formed from the thiophene and phenyl systems. Cyclizations to five-membered-ring products can present some difficulties. Although the conversion of **362** (X = OH) to **363** proceeds in trifluoroacetic acid in 58% yield, cyclization does not take place when only the less reactive thiophene β position is available for reaction. 370,444 Also, this *N*-acyliminium cyclization fails when ethyl or phenyl substituents are present on the cationic center, probably because of steric hindrance. Although 362 (X = Cl or OEt) cyclizes under Lewis acid catalysis, such reactions fail when the cyclization is restricted to the thiophene β position. In sharp contrast, thiophene cyclizations that generate a new six-membered ring are very tolerant of structural variations (e.g., eq 24), 45,119,370 and these cyclizations often proceed better than their phenyl counterparts. 45,119,354,358,438,440 An N-acyliminium cyclization that would engender a new five-membered ring is subject to strain in the transition state for ring closure, such that only reactive nucleophiles participate effectively. Relative to competition between phenyl and thiophene nucleophiles, 369 the cyclization of **308** does not occur on the thiophene (at the 4-position) but rather on the phenyl to form a new seven-membered ring,³⁶⁹ reflecting the difficulty for thiophene to react at its β position to yield a new fivemembered ring. In furan-based N-acyliminium cyclizations, the products depend on the position of the furan tether (2 vs 3), the tether length, and the substituent on the furan 5-position. 436 Furans linked at the 3-position cyclize to six- and seven-membered rings in good yields under mild conditions (eq 122); however, furans linked at the 2-position cyclize to six-membered rings only in good yields. 436 This outcome reflects the lower nucleophilicity of the furan β position relative to the α position. Furan reactions can be problematic due to degradation of the product by the acidic conditions needed for cyclization. For example, in eq 122 a short reaction time is critical to avoid a reduced yield and the generation of side products. There can be a specific problem of ring opening of the furan during the N-acyliminium cyclization in formic acid, as seen in the cyclization of **364**, ⁴³⁶ which affords **365** in 75% yield. The desired tricyclic product, **366**, is garnered by treating **364** with mesyl chloride and triethylamine instead. Furan ring opening does not ensue in the cyclization of **367**, wherein the expected tricyclic product is formed by attack at the 2-position (87% yield). 5-Aryl furan substrates provide mixtures of tricyclic compounds **368** and diketones **369**, with an emphasis on the latter products (eq 123). In a furan-based *N*-acyliminium ion spirocyclization with formic acid (eq 124), the furan does not suffer ring opening to a diketone. ⁴³⁵ $$\begin{array}{c} \text{Ar} \\ \text{O} \\ \text{HCO}_2\text{H} \\ \text{c-}C_6\text{H}_{12}, 3 \text{ min} \end{array} \qquad \begin{array}{c} \text{Ar} \\ \text{368} \\ \text{369} \end{array} \qquad \begin{array}{c} \text{Ar} \\ \text{Vield} \\ \text{4-CF}_3\text{C}_6\text{H}_4 \\ \text{64\%} \\ \text{47:S3} \\ \text{Ph} \\ \text{79} \\ \text{35:65} \\ \text{4-MeOC}_6\text{H}_4 \\ \text{82} \\ \text{24:76} \end{array} \qquad \begin{array}{c} \text{Et} \\ \text{O} \\ \text{NH} \\ \text{O} \end{array} \qquad \begin{array}{c} \text{CI23} \\ \text{O} \\ \text{O} \\ \text{O} \end{array} \qquad \begin{array}{c} \text{CI24} \\ \text{O} \\ \text{O} \\ \text{O} \end{array}$$ 5-Silyloxyfurans provide spirocyclic butenolides with newly formed six- and seven-membered rings (e.g., eq 125).⁴³⁷ In the case of forming a six-membered ring, the *threo* configuration is strongly favored with lithium perchlorate as the Lewis acid catalyst (eq 125); however, homologue **370** (n = 4) gives the seven-membered-ring product **371** as a mixture of isomers (ca. 1:1). Cyclizations of other types of 2-position-linked furans may actually undergo spirocyclic α attack prior to the observed β attack, presuming that addition of the electrophile is reversible. However, with the 5-silyloxyfuran system there is facile loss of the
silyl group from the spirocyclic intermediate of N-acyliminium cyclization such that the spirocyclic products are produced. #### 3.3.2. Pyrroles, Imidazoles, and Pyridines N-Substituted pyrroles linked to an N-acyliminium ion by the pyrrole α position react cleanly at the β position (e.g., eq 24). 45,358 N-Acyliminium ions linked to the pyrrole nitrogen cyclize at the α position to form five-, 445 six-, 446 seven-, 446,447 and eight-membered rings 446 (e.g., eqs 126–128 $^{445-447}$). A new five-membered ring is formed with difficulty, as indicated by the low yield in eq 126. 445 In eq 128, cyclization onto the benzene ring to generate a five-membered ring does not occur; rather, the pyrrole is attacked to give a new eight-membered ring. 446 It is impressive for an N-acyliminium cyclization to produce a new eight-membered ring with such a high yield (92%) and with such ease (23 °C for 1 h). The high reactivity of the pyrrole nucleus must play an important role here. There is a reported example of an *N*-acyliminium cyclization onto an imidazole.⁴⁴⁸ Reaction of histamine with 4-oxodecanoyl chloride in pyridine affords a mixture of amide **372** and tricyclic molecules **373** and **374**, which are acid-induced cyclization products of **372**. Prolonged heating of **373** in 10% aqueous acetic acid gives essentially pure **374** (no yield given). Since pyridine is an electron-deficient heterocycle, one might expect it to be unreactive in *N*-acyliminium ion cyclizations. Indeed, electrophilic reactions involving pyridine, such as nitration, sulfonation, and halogenation, usually require strenuous conditions. However, *N*-acyliminium cyclizations do proceed when the pyridine nucleus is activated by 2-methoxy substitution (e.g., eq 129). A lower yield results when the *N*-acyliminium ion can eliminate to give an enamide, as with a 5-hydroxypyrrolidin-2-one substrate. In the example of **375**, attack is favored *para* to the 2-methoxy, instead of *ortho*, to give a mixture of **376** and **377** (eq 130).⁴⁵⁰ #### 3.3.3. Cyclization of Indoles via the Pyrrole Ring Although a wide diversity of indole-based N-acyliminium ion cyclizations have been reported, 15,19 a large proportion of these are ambiguous as to whether cyclization takes place by an N-acyliminium ion or by a standard iminium ion followed by formation of the lactam. The reactions in question generally involve direct thermal condensation of a 2-(3-indolyl)-ethylamine species with a keto or aldehydo carboxylic acid, and derivatives thereof (e.g., esters or acetals). $^{54,97-99,101-103,106-108,113,312,451-463}$ Given the high nucleophilic reactivity of indole, most of the "thermal reactions" probably proceed by a Pictet—Spengler cyclization and subsequent lactamization, not by an N-acyliminium ion process. An early example of an unambiguous N-acyliminium ion cyclization of indole is contained within a total synthesis of yohimbine (viz. eq 13). This approach was also exploited in a synthesis of geissoschizine, via intermediate **378** (eq 131). In this type of reaction, attack at the indole 3-position (β -cyclization) can occur prior to ultimate α -cyclization. Indeed, amide dialdehyde **41**, in which the amide carbonyl is positioned differently than in **33**, provides **42** (HOAc/NaOAc, reflux) because the β -cyclization intermediate is trapped by an internal nucleophile. A noteworthy illustration is provided by the cyclization of the simplified amide aldehyde **379** (HCO₂H/HCO₂Na, 100 °C), which leads to a 1:1 mixture of **380** and **381** in 78% yield. Apparently, the indolenine intermediate from β -cyclization is captured by formate reduction in a Leuckart reaction. A particularly noteworthy β -cyclization occurs in the skeletal rearrangement of **382** (racemic) to **383** with either 40% sulfuric acid or boron trifluoride etherate. Accordance 460 Presumably, intermediate indolenium ion **384** fragments to *N*-acyliminium ion **385**, which then cyclizes at the β position to yield **383**. There are some other examples of indole β -cyclization with *N*-acyliminium ions, $^{108-110}$ and a discussion of α - vs β -cyclization appears in two reviews on the Pictet–Spengler reaction of indoles. The sum of To ensure an unambiguous N-acyliminium ion process in indole cyclizations, the secondary amide bond should be intact before cyclization is attempted. 354,460,463,465,466 Straightforward examples are the efficient cyclizations of 386 and 387 in dilute methanolic HCl to 388 and 389, respectively. 465 Given the high reactivity of indole, seven-membered-ring derivatives **390–392** are readily obtained from **393**– **395** in around 80% yield with just dilute alcoholic HCl.⁴⁶³ Interestingly, the thermal condensation of 2-acetylbenzoic acid with 3-(3-aminopropyl)indole does not give lactam 390, because enamide 393 is formed instead. 463 However, the analogous reaction with tryptamine gives **396** in 63% yield, ³¹² suggesting that this cyclization proceeds via a Pictet-Spengler process. Alternatively, the reaction of PhC(O)CH₂-CH₂CO₂H with tryptamine in refluxing toluene yields enamide **397**, an uncyclized *N*-acyliminium ion precursor, 312 although cyclization to 398 does proceed under more drastic protic conditions (BuOCH2CH2-OH, 171 °C). Thus, it is possible for the direct thermal condensation to take an *N*-acyliminium ion course. There are numerous examples of unambiguous N-acyliminium ion cyclizations of indoles, which are conducted under the experimental protocols commonly employed for benzene cyclizations. $^{45,95,100,104,109-111,343,377,397,467-477}$ The conversion of **399** to 15-azayohimbane **400** in 74% yield (eq 132) is a poignant case 472 since the alternative thermal condensation method would not be viable here on account of the presence of a basic nitrogen. Indole-based cyclizations with aliphatic substituents α to the carbocation center of a six-memberedring N-acyliminium species generally result in poor stereoselectivity (e.g., eq 18^{95}). $^{54,92,93,95,99-102}$ A notable exception exists for a vinyl substituent on the stereogenic center in the cyclization of 38 to give a product with an isomer ratio of 18:1 (eq 19). 100 A benzyl urethane substituent affords enhanced stereocontrol, with 100% diastereoselectivity and >95% enantioselectivity in the boron trifluoride etherate cyclization of 401 to 402 (-78 to -10 °C; 66% yield) (cf. $317a \rightarrow 318$). 397 However, the cyclization of 401 with a protic acid does not exhibit such excellent stereocontrol, as there is just 90% trans diastereoselectivity and a significant loss of enantioselectivity. The extensive racemization in **402** (24% ee) is presumably caused by an enamide intermediate. In this vein, the interesting rearrangement of **382** to **383** (vide supra) and the remarkable cascade reaction on going from **403** to **406** (eq 133) 477 feature highly stereoselective indole-based N-acyliminium cyclizations. Highly stereoselective indole-based transformations are also illustrated in eqs $21^{108,109}$ and $22.^{110}$ Cascade reactions are useful in the synthesis of erythrinane-type derivatives containing an indole nucleus, ^{68,80,83,86,87,320} although they are basically extensions of benzenoid cyclizations. ^{83,86,87} The dipolar cycloaddition of **407** to oxabicycle **408**, followed by *N*-acyliminium cyclization to **409** (eq 134), compares very favorably with the benzenoid analogue in eq 80.83,86 However, a Pummerer-initiated tandem reaction of 410, in analogy to $228 \rightarrow 229$ in eq 81, does not yield erythrinane 411 or its precursor cycloadduct, 412.87 Rather, a mixture of tetracyclic compounds 413a/b is formed by preferential cycloaddition of the intermediate isobenzofuran to the indole π -bond (not the acrylate π -bond). Although the cy- cloaddition problem can be overcome by using the *N*-tosyl derivative **414**, which leads to the cycloadduct **415** in 71% yield (TMSOTf and Et₃N),⁸⁷ the *N*-acyliminium cyclization of **415** to erythrinane **416** fails.⁸⁷ Another type of tandem process is initiated by a Pummerer reaction, as illustrated in eq 135.³⁴⁴ When the indole 2-position in a tryptamine derivative is substituted, N-acyliminium ion cyclization can occur at the 4-position to generate a new sevenmembered ring (eq 136). 381,382 However, 2-carboxy is not a suitable blocking group because cyclization at the 2-position can still take place, with loss of the (140) carboxy group (eq 15),⁹³ in analogy with Pictet—Spengler reactions of tryptamine.^{7,110} There can be a dichotomy of reactivity regarding indole positions 2 and 4 in that enamide **316** (Z or E isomer) cyclizes exclusively at the 4-position to give an azepinoindole, despite the availability of the more reactive 2-position (eq 102), whereas the tryptophan analogue **417** cyclizes only at the 2-position, as anticipated, to yield β -carboline **418** (eq 137).³⁸³ The reaction of **419** (X = H_2) with paraformaldehyde/trifluoroacetic acid or formalin/formic acid occurs selectively at the indole 2-position to give **420** in ca. 70% yield; there is no attack at the 4-position, nor on the disubstituted (Z)-alkene. However, the presence of a 3-acyl group on the indole, such as with **419** (X = O), is sufficiently deactivating that the alkene reaction then predominates. However, the presence of a 3-acyl group on the indole, such as with **419** (X = O), is sufficiently deactivating that the alkene reaction then predominates. To encourage a reluctant Pictet—Spengler reaction of N-benzylidine tryptamine, Yamanaka et al. investigated activation by chloroformates, thereby devising a facile N-acyliminium ion cyclization (e.g., eq 138). 473 In general, acetyl chloride and ethyl chloroformate work similarly, and alkyl or electron-rich aryl substituents on the imine carbon give lower
yields. 340 Activation can also be achieved with p-tosyl chloride in an N-sulfonyliminium-type cyclization. $^{478-480}$ A more complex variant entails the activation of tryptophan imines with prolyl chlorides, to arrive at pentacycles of the fumitremorgin family of natural products (eq 139). 474 $$\begin{array}{c} \text{H. CO}_2\text{Me} \\ \text{NH}_2 & \text{CH}_2\text{CH}_2\text{CHo} \\ \text{Orbz-L-prolyl Cl} & \text{H. CO}_2\text{Me} \\ \hline \\ \text{O. Cbz-L-prolyl Cl} & \text{H. N-Cbz} \\ \end{array}$$ N-Acyliminium cyclizations of indoles have provided some interesting applications in the synthesis of unusual bridged diazabicyclic products, two examples of which are illustrated in eqs 140^{481} and $141.^{482,483}$ #### 3.4. Reactions of Alkenes and Related Species The study of the reactions of alkenes in N-acyliminium ion cyclizations has been a very fruitful and NHMe AcCOCI, Et₃N wash with $$CF_3CO_2H$$ Ph CH_2CI_2 , $0^{\circ}C$ 0.1 N HCl CF_3CO_2H CF_3CO_2H CF_3CO_2H CF_3CO_2H CF_3CO_3H CF diverse area of research. Although Belleau reported the first examples in 1957, 24,25 this field did not receive meaningful development until nearly two decades later. ^{15,123,124} Speckamp and co-workers pioneered N-acyliminium cyclizations with alkene π -nucleophiles, often capitalizing on imide partial reduction to access diverse acyliminium ion precursors. ^{15–19,123–139,484} The introduction of mild cyclization conditions, such as formic acid at room temperature, helped to promote this area. ^{15,123,124} A representative example is given in eq 29. N-Acyliminium ions are well suited to cyclization onto alkenes, and good stereochemical control is frequently realized. Cyclization of an N-acyliminium ion onto a tethered alkene can proceed by two different modes, exocyclic (62) or endocyclic (63), to produce two different ring sizes (eq 28).122 The intermediate carbocation can then undergo transformations such as solvent capture, nucleophile addition, elimination, or rearrangement, to yield the reaction products. The type of products will depend on the reactivity of the N-acyliminium ion, reaction conditions, type of alkene nucleophile, length of the tether, and location of the tether. These issues will be dealt with in this subsection. Aspects relating to stereochemistry and mechanism were mentioned earlier, in section 2, Mechanism and Stereochemistry. #### 3.4.1. Standard Alkenes Nitrogen-linked alkenes have received considerable attention, and a broad range of them have been studied.^{15–19} With the formic acid method, monosubstituted (e.g., **64**) and 1,2-disubstituted alkenes (e.g., **72** and **73**) furnish single products in nearly quantitative yield in around 18 h. With 1,1-disubstituted alkenes there is a dramatic rate enhancement; for example, **421** is transformed into a mixture of cyclic formates **422** in just 15 min at 8 °C.¹³⁰ However, with acetic acid this type of reaction requires a much longer time, such that **421** yields a mixture of cyclic acetates corresponding to 422 in 23 h. Trisubstituted alkene **79** cyclizes to **80/81** (61:39 ratio) in 2 h (80% yield), as well as to a mixture of olefins, 423 (20%), due to the elimination of formate. The reaction of disubstituted alkene 69 with formic acid results in a mixture of azabicyclo[3.3.1]nonane regioisomers 70/ **71** in a 56:44 ratio (ca. 100% yield). ¹³⁰ This outcome militates against the practical use of this route for the regiocontrolled elaboration en route to the Lupine alkaloid aloperine. 485 However, a different cyclization regime can obviate this difficulty. For example, enamide **424** reacts with triflic acid in the presence of excess iodide to provide polycyclic product **425** as a single regioisomer and single diastereomer (eq 142).485 Cyclization onto a (*Z*)-alkene can sometimes be problematic, especially when steric hindrance is involved. Although **426** reacts normally in formic acid to give **427** in ca. 95% yield, **428** gives the pyrrolinone byproduct **429** (25% yield) in addition to the expected product **430** in 75% yield. Steric crowding did not affect these results, but the cyclization of propellane **431** is impeded, and no desired product is formed. By contrast, cyclization of **432**, which lacks the (*Z*)-alkene, proceeds well and is complete in just 1 h. Substitution α to nitrogen on the alkene tether can control stereochemistry by A(1,3) strain, as exemplified in eqs 33^{140} and $39.^{150}$ This steric factor has been exploited in several stereocontrolled syntheses of alkaloid natural products. $^{143,196-199,484,486-492}$ Substitution β to nitrogen on the alkene tether can also be an effective stereocontrol element, as exemplified in eqs 31^{137} and $32.^{124,137}$ N-Acyliminium ions with non-hydrogen substituents (e.g., alkyl groups) on the iminium carbon, usually obtained from tertiary ω -hydroxy lactams (e.g., **433**), cyclize reasonably well, although there are some issues to consider. The yields for this reaction type may suffer somewhat, partly because there is a lower efficiency in generating the requisite N-acyliminium ion precursors. Additionally, steric effects may arise, especially in cyclizations involving a (Z)-alkene nucleophile. For example, the cyclization of **433a** with formic acid is problematic in that indolizidines 434a are not produced at room temperature or at 45 °C, and decomposition occurs with stronger acids. ¹³⁶ The corresponding reaction of analogue 433b did afford cyclized products 434b, albeit in a modest 41% yield (overall from the imide). By comparison, the formic acid cyclization of 1,1-disubstituted alkene 433c to 434c is complete in 30 min in 85% yield. The formic acid cyclization of hydroxy lactam **435** to indolizidine **437** proceeds as well as the cyclization of enamide 436 to 437 (65% overall yield from the imide). 139 However, with a bulky 1,3dithiane substituent present, as in 438, formic acid cyclization to give 439 is very sluggish (7 days; 67% overall from imide). 136 Part of the problem is that 438 does not mainly exist in the ring-closed form; rather, it is composed of 50% open-chain keto amide (not shown), which cyclizes quite slowly. *N*-Acyliminium ions based on 1,3-thiazolidin-2-ones cyclize like the corresponding carba analogues, except that the reaction rate may be retarded by dehydration of the ω -hydroxy or ω -alkoxy lactam starting material to an enamide (i.e., a thiazolin-2-one). 429,484 As a representative example, treatment of **440a** with formic acid affords **441a** in 82% yield after 142 h (ca. 6 days). This sluggishness, which contrasts with the analogous pyrrolidinone reactions, is connected with formation of intermediate enamide 442. When the pathway to an enamide is blocked by gem-methyl groups, as in 440b, the rate of ring closure is significantly enhanced, such that formic acid cyclization gives 441b in 92% yield after just 2 h. A more nucleophilic 1,1-disubstituted alkene can overcome this sluggishness to some degree, as in the 18-h cyclization of **440c** to **441c** in ca. 70% yield, although this reaction rate is still much slower than that of the analogous pyrrolidinone case (viz. $421 \rightarrow 422$). In a dramatic example of rate reduction due to dehydration, cyclohexenyl substrate 443 yields only the enamide intermediate in formic acid at room temperature. However, in refluxing formic acid, cyclized products 444 (23%), 445 (23%), and 446 (54%) are obtained.429 The formation of seven-membered rings in the *N*-acyliminium ion cyclization of alkenes can be effective, although difficulties may surface, such as a decrease in reaction rate and competitive formation of six-membered rings. ^{296,313,429,493–500} Extending the side chain of a nitrogen-linked alkene by one carbon to a pentenyl group, as in **447a** and **447b**, greatly slows the rate of cyclization (to **448a** and **448b**), although the yields are still quite acceptable (eq 143; cf. **440b** \rightarrow **441b**). 429 Ring closure to seven-membered rings is facilitated for monosubstituted alkenes when the N-acyl group is exocyclic relative to the iminium ion. $^{308,493-498}$ For example, N-pentenoyl-2-methoxy-pyrrolidine derivatives (from electrochemical anodic oxidation) cyclize in good yields to 5,7-bicyclic products (eq 144; 5–10% of 5,7-bicyclic alkenes may also be produced by elimination of HCl). 493 Surprisingly, $$\begin{array}{c} R \\ S \\ N \\ OMe \end{array} \begin{array}{c} TiCl_4 \\ CH_2Cl_2 \\ -78 \text{ to } 23 \text{ °C} \\ 33 \text{ h} \end{array} \begin{array}{c} R \\ N \\ El, Cl_2 \\ H \end{array} \begin{array}{c} Cl_2 \\ Cl \\ Cl \\ Mixture \text{ of } \\ Glissferomers \\ Cll_0OMe, CO_0Me \end{array}$$ treatment of phenyl- or methyl-substituted pyrrolidine amides **449a** or **449b** with titanium(IV) chloride provides 5,6-bicyclic (debenzylated) products **450a** (90%) or **450b** (82%) exclusively, each as a mixture of diastereomers; no 5,7-bicyclic products **451a** or **451b** are formed. ^{494–497} Apparently, there is a rear- rangement that entails initial cyclization to a seven-membered-ring carbocation followed by migration of the amide α,β carbon—carbon bond to give a six-membered system with an exocyclic carbocation, which is trapped by a chloride ion. ^{495–498} In contrast, when R is an electron-withdrawing group, such as acetoxymethyl (**449c**) or 4-nitrophenyl (**449d**), only seven-membered-ring products **451c** (85%) or **451d** (61%) are obtained. ⁴⁹⁸ With this information in hand, one might suspect that the titanium(IV) chloride cyclization of **452** actually yields 5,6-fused products instead of the reported 5,7-fused products **453**. ³⁰⁸ A good example of exclusive generation of seven- membered-ring products, with control of the configuration at the ring junction, is the cyclization of **454** to **455a** and **455b** (eq 145).³¹³
The initially formed triflate is presumably converted to the ultimate halides by S_N2 displacement, with **455b** presumably arising from solvent-derived chloride. Another noteworthy case, mentioned earlier, involves phenylacetamide **298**, which has two competing nucleophiles, a 3,4-dimethoxyphenyl and an alkene. On treatment of **298** with paraformaldehyde and formic acid, the alkene reacts almost exclusively to furnish the seven-membered lactam **299** (78% yield); there is only a trace quantity of isoquinolinone **456** formed from attack on the benzene ring. ²⁹⁶ Interestingly, it is possible to use alkene cyclizations to form macrocyclic rings under high-dilution conditions (ca. 3 mM). ¹⁵⁶ Given a protracted reaction time of 38 days at 43 °C, 1,3-thiazolidin-2-one **457** cyclizes in formic acid to the macrobicyclic compound **458** in an impressive 84% yield (presumably a mixture of two isomers). A comparable result is obtained in the conversion of **459** to **460** (HCO₂H, 43 °C, 20 days; 82% yield). The formation of five-membered rings can be unpredictable since geometric constraints in the cyclization may pose an obstacle to ring closure. In general, cyclization via a 5-endo-trig process is problematic, while cyclization via a 5-exo-trig process is well behaved. For example, with simple N-allyl ω -hydroxy or ω -alkoxy lactams, such as **461**, the closure of a new five-membered ring is not viable, presumably because this reaction must proceed by an unfavorable 5-endo-trig transition state, in which the π orbitals of the terminal sp²-hybridized centers are not properly aligned. ^{156,159,216,395,499,501} A poignant illustration is offered by substrate **462**. In the competition between allylic and homoallylic alkenes in **462**, only the homoallylic group reacts to furnish indolizidine **463** in 70% yield (HCO₂H, 23 °C, 1 h; then saponification). ¹⁵⁹ 2-Methoxypyrrolidine **464**, in which the *N*-homoallyl group contains the amide carbonyl, does not yield any five-membered-ring pyrrolizidine products; rather, only an indolizidine product is obtained. ⁴⁹³ However, as indicated in eq 146, a carbon-linked allyl group can cyclize to a five- membered ring in good yield.⁵⁰¹ Five-membered rings are generated more consistently via *N*-acyliminium ion reactions that involve a 5-*exo*-trig geometry, especially when the alkene is activated, as noted in eqs 45 and 50.^{179,188,207} A good example of a direct 5-*exo*-trig cyclization onto an unactivated alkene is shown in eq 147.⁵⁰² An interesting application of the 5-exo-trig cyclization is the conversion of N-Boc-2-ethoxyazepines bearing 3-homoallyl groups to tricy-clic products, in which the incipient carbocation from N-acyliminium cyclization is captured by the ure-thane carbonyl (eq 148). 224 There is strict diastereo-selectivity with either the (E)- or (Z)-alkenyl side chains (note: $96\%~Z \rightarrow 96\%~\alpha$). Another approach to forming five-membered rings takes advantage of an initial aza-Cope rearrangement followed by a 5-exo-trig cyclization, $^{150-166}$ as portrayed in eqs 41 and 42. Alkenes that are deactivated, even by virtue of one halogen substituent, usually do not participate with facility in N-acyliminium cyclizations. $^{132,345,499,501,503-506}$ Exposure of the α,β -unsaturated ester **465** to tin(IV) chloride at 70 °C provides a 28% yield of chloro indolizidine **466**, en route to alkene **467**. 503 The ester directs a 6-endo-trig, as opposed to a 5-exo-trig, cyclization. Higher yields result in the N-methoxy-carbonyliminium and N-sulfonyliminium cyclizations DBN = 1,5-diazabicyclo[4.3.0]non-5-ene MeO $$\frac{MeOH}{HCl}$$ $\frac{MeOH}{HCl}$ $\frac{DBU}{tolluene}$ $\frac{DBU}{reflux}$ $\frac{DBU}{[67\%; (+)-snantiomer]}$ (150) of enones outlined in eqs 149⁵⁰⁴ and 150;²⁰⁹ however, it is possible that the deactivated alkene is derivatized in situ by methanolic HCl prior to cyclization. Conjugate addition of HCl to the enone, followed by enol ether formation, would give an intermediate such as **468**,⁵⁰⁴ cyclization of which would then involve a reactive enol ether nucleophile. When an alkene is directly attached to the iminium carbon, *N*-acyliminium ion spirocyclization can ensue. ^{133–135,139,309,311,507–509} This reaction has been applied to the stereoselective formal total synthesis of perhydrohistrionicotoxin. ^{134,139,507,508} In a model system, treatment of hydroxy lactam **469** or enamide **470** with formic acid affords spirocyclic formate **471** in quantitative yield with high stereoselectivity; ¹³³ however, the corresponding six-membered hydroxy lactam does not spirocyclize as well (ca. 60% yield). Although **472**, with an unsubstituted nitrogen, is transformed by a 6-*endo*-trig pathway to 6,6-azaspirane **473** with excellent stereocontrol (eq. 151), ^{134,139} the closely related N–H morpholin-2-one substrate supplies mainly the 5,6-azaspirane by a 5-*exo*-trig pathway (eq 152).^{135,139} Paradoxically, a standard 6-*endo*-trig ring closure is preferred for the nonspirocyclic reaction of morpholin-2-one **474** to **475** (80% yield).⁵¹⁰ An excellent foundation for *N*-acyliminium spirocyclization can be established via the Kulink- ovich approach to tertiary enamides (eq 153). 309,311 Two different types of N-acyliminium reactions are illustrated in eqs 153^{309} and $154.^{311}$ The configuration of the product from the cyclization and formate hydrolysis in eq 153 is completely controlled, thus giving rise to the framework of the marine alkaloid lepadiformine. 309 Pyrrolidines substituted with allyl or homoallyl groups at ring positions α , β , or γ to the iminium carbon lead to azabicyclic structures. ^{15,128,132,344,511,512} The α case: With a homoallyl group at the 4-position of a pyrrolidin-2-one substrate, 1-azabicyclo[4.3.0]-nonane (octahydroindole) derivatives are obtained, ^{15,132,344} as exemplified in eq 82. ³⁴⁴ The β case: 5-Hydroxypyrrolidin-2-ones substituted with an allyl group at the 3-position supply azabicyclo[3.2.1]-octanes, ¹²⁸ as observed in the formic acid cyclizations of **476** to formates **477** (87 °C, 70 h) and of **478** to a single formate isomer of **479** (23 °C, 1 h; probably β configuration). The γ case: A pyrrolidine substrate with an allyl group at the 5-position delivers a 7-azabicyclo[3.2.1]octane (eq 155). ⁵¹¹ Tandem reactions involving alkene nucleophiles are useful in providing various polycyclic systems efficiently. Fortunately, N-acyliminium ion-initiated polyolefin cyclizations proceed with facility and often with high stereocontrol (e.g., eqs 32, 34–38). $^{129,131,137,144-149,429,513}$ As mentioned earlier, azasteroids **88** and **89** are produced as single isomers in high yield through formic acid cyclizations (eqs 34 and 35). 129,131 When formic acid is too sluggish, as in the conversion of **87** to **90** (major isomer, 40% yield), trifluoroacetic acid (CH₂Cl₂, 5 °C, 30 min) can be used effectively to give **90** in 84% yield. 131 (Aza-steroid derivatives have also been accessed by nontandem N-acyliminium ion cyclizations. 467,514) Tandem reactions can produce other interesting polycyclic molecules (eqs 36-38, $^{144-149}$ 156, 339,515 and 157^{475}). A $$\begin{array}{c|c} CI \\ H \\ NHCO_2-I-Bu \end{array}$$ $$\begin{array}{c|c} CICI \\ H \\ CH_2CI_2 \\ reflux \end{array}$$ $$\begin{array}{c|c} H \\ N \\ O \\ H \\ (65\%_4>9:1 \alpha \beta CI) \end{array}$$ (156) $$\begin{array}{c} H \\ CF_3SO_2 \\ Me \\ CO_2^*Li^+ \\ R = 2,4-dimethoxybenzyl \end{array} \qquad \begin{array}{c} (CH_2O)_n \\ CF_3CO_2H \\ CHCl_3 \\ CF_3SO_2 \\ Me' \\ (ca. 85\%) \end{array} \qquad \begin{array}{c} H \\ CF_3SO_2 \\ Me' \\ (ca. 85\%) \end{array} \qquad (157)$$ different type of tandem reaction involves allyltrimethylsilane and bis-(α -methoxy) amides in a [3 + 3] annulation (eqs 158⁵¹¹ and 159;⁵¹² cf. eq 155). A related [4 + 3] annulation between carbamate **480** and CH₂=CHCH₂CH=C(OEt)OSiMe₃ affords a 9-azabicyclo[4.2.1]nonane in 60% yield.⁵¹² $$\begin{array}{ccc} O & & & & & & & & & & \\ O & & & & & & & & & \\ O & & & & & & & & \\ O & & & & & & & \\ O & & & & & & & \\ O & & & & & & & \\ O \\ O & & & & \\ O &$$ The tandem chemistry of Padwa and co-workers is designed to capitalize on reactive species, such as a carbenoid or stabilized carbocation, to generate *N*-acyliminium ions for subsequent ring closure. 83,86,343-345,430,431,516 An example of the *carbenoid method*, which entails (1) cyclization to a mesoionic heterocycle, (2) 1,3-dipolar cycloaddition to give an *N*-acyliminium ion precursor, and (3) *N*-acyliminium cyclization onto an alkene, is presented in eq 160.86,516 The 4:1 ratio of diastereomers repre- Me Me Me $$N_2$$ CO_2Et $CI_1_2CI_2$ V_3 V_4 V_5 V_6 V_6 V_7 V_8 sents an equilibrium mixture since the individual isomers equilibrate on exposure to the acid catalyst. Examples of the *thiacarbenium ion method*, which entails (1) generation of a thiacarbenium ion, (2) addition of it to an enamide double bond or the nitrogen of a secondary amide to generate an N-acyliminium ion, and (3) cyclization onto an alkene, are presented in eqs $82^{343-345}$ and $161.^{345}$ Acyclic N-acyliminium ions are also effective in cyclizations with alkenes (e.g., eqs 67 and 68). $^{161,163,164,166,298-301,303,517,518}$ The cyclization of α -trimethylsilyloxy formamides with alkenes generates cyclohexane products with good yields (eqs 162 and 163). 303 A related N-tosyliminium ion cyclization provides a ready entry into bicyclo[3.3.1]nonane and bicyclo[4.3.0]nonane systems (eqs 164 and 165);⁵¹⁹ it is remarkable that just a single isomer is formed in the latter reaction. Secondary carboxamide **481** cyclizes with paraformaldehyde to *cis*-fused bicyclic lactam **482** in 57% yield, exclusively with Z stereoselectivity (eq 166).⁵¹⁸ In a series of reactions of secondary
carboxamides, adducts between *N*-homoallylurethanes and formaldehyde or methyl glyoxylate led to 4-formyloxypiperidines (e.g., eqs 167 and 168). 161,166,215 The glyoxylate-based cyclization, dubbed the "glycine cation method", generally results in isomeric mixtures when conducted in formic acid; 161 however, single isomers (*trans*) are obtained in some tin(IV) chloride reactions (e.g., eq 168). 166 Interestingly, two different products can arise depending on how the tin(IV) chloride reaction is performed and quenched. If the reaction is warmed to 23 °C before quenching with aqueous sodium bicarbonate, then it gives mainly the *trans*-4-chloropipecolic acid ester, whereas if the reaction is quenched at -78 °C, then it usually gives a *cis*-hydroxypipecolic ester (eq 168). The ester group probably participates with the intermediate carbocation to generate a bicyclo[3.2.1] oxonium species that is cleaved with retention of configuration at the 4-position. Tandem *N*-acyliminium ion cyclizations/Ritter reactions with tin(IV) chloride in acetonitrile at -20 °C result in a *trans*-4-(acetamido)pipecolic acid ester (eq 168). 164,165 This protocol was applied to the synthesis of the 4-aminopiperidine core of a neurokinin-1 antagonist (eq 169). 163 $$\begin{array}{c} \text{CH}_{2}\text{Ph} & \text{CISO}_{3}\text{H} \\ \text{NCO}_{2}\text{CH}_{2}\text{Ph} & \frac{\text{MeCN}}{20 \text{ °C}} \\ & 30 \text{ min} & \text{CO}_{2}\text{CH}_{2}\text{Ph} \\ & & \text{CO}_{2}\text{CH}_{2}\text{Ph} \\ & & \text{(169)} \end{array}$$ The *N*-acyliminium ion cyclization with alkenes has been applied to cyclic ions containing an additional heteroatom, particularly to *N*-acylhydrazonium^{205,427,428} and imidazolidinium ions.⁵²⁰ Pyrazolidine alkenes **483** and **484** cyclize well to diazabicyclic compounds **485** (6-*endo*-trig) and **486** (5-*exo*-trig), respectively (eq 170).²⁰⁵ For this type of reaction, titanium(IV) chloride tends to give higher yields than tin(IV) chloride, and formic acid also works. *N*-Acylhydrazonium ion cyclizations with a carbomethoxy group on the iminium carbon can furnish pyrazolidinecarboxylate or piperazic acid derivatives. ⁴²⁸ In the treatment of allyl hydrazide **487** with tin(IV) chloride, pyrazolidinecarboxylate **488** is formed in 75% yield (*cis/trans* = 1:5) via a 6-*endo*-trig cyclization, followed by a rearrangement that arises in intermediate cyclic carbocation 489.428 Methallyl substrate 490 reacts with diethylaluminum chloride to yield a mixture of pyrazolidinecarboxylate **491** (27%, *cis/trans* = 1:1.8) and piperazate **492** (59%, *cis/trans* = 1:8.8); however, with formic acid it is possible to convert 490 to only piperazate 493 (68%, trans only). Cyclization of trisubstituted alkene 494 with tin(IV) chloride or formic acid results in 495 in 58% yield or 496 in 66% yield, with only the *trans* configuration, via a 5-exotrig process. A seven-membered-ring product, **497**, is accessible in 65% yield (1:1 isomer ratio) from the homoallyl congener of 487. 4-Hydroxyimidazolidin-2-one 498 reacts with formic acid to give the 5,6bicyclic compound 499 in 50% yield (1:1 ratio); however, it is not possible to cyclize **500** to **501**, even under strenuous conditions, because a 5-endo-trig pathway is required (in analogy with the corresponding pyrrolidinone case).⁵²⁰ The outcome of certain cyclizations with alkene nucleophiles may be impacted by the intervention of a 2-aza-Cope rearrangement. In particular, homoallyl cyclic N-acyliminium ions tend to experience this process, depending on the substitution pattern. 150-166 This [3,3] rearrangement is more prevalent when the β carbon of a nitrogen-linked homoallyl group is substituted with two alkyl groups, an aryl, or an alkoxy group, because of stabilization of an intermediate carbocation. 150-166 Acyclic N-acyliminium ions undergo the 2-aza-Cope rearrangement readily and it may be fast relative to the rate of cyclization, 161,163,166 as determined by product stereochemistry and trapping experiments (e.g., eq 171). 161,166 This process can be made visible through the race-mization of enantiomerically enriched substrates. 163 In eq 169, enantiomerically pure (S) substrate leads to a product with just 42% enantiomeric excess, 163 indicating that the rate of equilibration of *N*-acyliminium ions in the aza-Cope rearrangement is not much faster than the rate of cyclization (eq 172). In EtO $$N_{Cbz}$$ M_{Cbz} M_{Cb contrast, little or no racemization is observed in cyclizations of enantiomerically pure allylglycine derivatives under various conditions (e.g., eq 173), ¹⁶⁴ indicating the absence of a competitive 2-aza-Cope rearrangement. Clearly, the ester group preserves the enantiomeric integrity. Thus, the nature of substituents can have a significant effect on the 2-aza-Cope process. *Gem*-disubstitution at the β carbon of the homoallyl group distinctly accelerates the 2-aza-Cope rearrangement, and this influence causes a dramatic difference in reaction between monomethylated **502**¹³⁷ and *gem*-dimethylated **100**. ¹⁵¹ While **502** cyclizes in formic acid to indolizidine **503** (ca. 80% yield; 10% of three other formate isomers), ¹³⁷ **100** gives pyrrolizidine **101** stereoselectively in high yield (81%; ¹⁵¹ 100% via rearranged *N*-acyliminium ion **504**. Remarkably, the conversion of hydroxypyrrolidine **100** to pyrrolizidine **101** is complete in just 5 min at room temperature. ¹⁵⁴ Although a benzyloxy group is well behaved in the N-acyliminium cyclization in eq 41, ^{152,157} it is problematic in the cyclization of **505**, where the ether oxygen competes against the alkene to capture the rearranged N-acyliminium ion **506** (eq 174). ¹⁶² Perhaps the (E)-benzyloxy group in the rearranged ion **102** in eq 41 is not suitably disposed to react in this manner. Ar = Ph or 4-anisyl (An) β -Monosubstituted homoallyl groups normally do not undergo the 2-aza-Cope process (e.g., eqs 31^{137} and $32^{124,137}$) since a special driving force is required, such as a phenyl^{155,160} (eqs 174 and 175) or a methoxy¹⁵⁴ (eq 176) substituent.¹⁶² Indeed, aryl, ^{155,160} alkoxy, 154 and vinyl 159 groups are particularly conducive to this [3,3] rearrangement. The reaction in eq 176 involves mainly the rearranged N-acyliminium ion **508** to yield the pyrrolizidine products; there is only ca. 3% yield of indolizidines **509**. 154 The cyclization of 507 (Ar = Ph) also generates only a minor amount of indolizidine products (eq 175). 155 An electron-rich 4-methoxyphenyl group (507, Ar = An) depletes the indolizidines further, and pyrrolizidines are obtained exclusively (eq 175). The 4-methoxyphenyl group enhances the reaction rate by approximately 20-fold. 155,160 Evidently, substituents that impart significant stabilization to the carbocation derived from the cyclization of intermediate ions 504, **508**, or **510** (i.e., *gem*-dimethyl, methoxy, and aryl) shift the dynamic aza-Cope equilibrium between the two *N*-acyliminium ions to the right (e.g., $98 \rightarrow 99$) to favor formation of new five-membered rings. The aza-Cope N-acyliminium ion cyclization in eq 42 is probably assisted by the strategically positioned silyloxy substituent. 165 There is a limitation on the aromatic ring with respect to its nucleophilic reactivity since ring closure could occur onto it, as observed with 3-methoxyphenyl and 3,4-dimethoxyphenyl groups [e.g., **507** (Ar = DMP) \rightarrow **511**]. ¹⁶⁰ ### 3.4.2. Vinyl Ethers and Thioethers Cyclizations of alkenes substituted with ether 127,132,154,165,229,230,233-237,521 or thioether 178-184 groups have received relatively limited attention, although such activated alkenes have the potential to be excellent nucleophiles. There has been more interest devoted to the cyclizations of enols and enolates. Silyl enol ethers have played a key role in total syntheses of gelsemine. $^{233-235,521}$ Treatment of (*E*)- or (*Z*)-**200** with boron trifluoride etherate for ca. 30 min gives **201** (*endo* CHO) or **202** (*exo* CHO) with high stereospecificity in good yields; a 90:10 mixture is obtained in 79% yield from (*E*)-**200** (*E*/*Z* > 90:10), and a 10:90 mixture is obtained in 92% yield from (*Z*)-**200** (*E*/*Z* < 90:10). 234 In the synthesis of (\pm)-gelsem- ine, intermediate **512** (3:1 E/Z mixture) is converted to a 3:1 mixture of *endo* and *exo* aldehydes **513** and **514** (70% yield).^{233,234} Cyclization can also be ac- complished effectively with trimethylsilyl triflate²³⁵ or trifluoroacetic acid.⁵²¹ Indeed, tricyclic silyl enol ether **515** cyclizes to the gelsemine intermediate **516** in 74% yield via a difficult 5-*endo*-trig pathway (CF₃-CO₂H, reflux, 15 min),⁵²¹ and this reaction proceeds with greater facility than the related enol-based ring closure of **197** to **198** (CF₃CO₂H, reflux, 8–10 h; 85% vield).²³¹ N-Acyliminium cyclizations of silyl enol ethers underpin syntheses of quinocarcin²³⁶ and biotin.²³⁷ Cyclization of either alkene isomer of **517** produces only **518**, with the correct configuration of (+)-biotin (TMS-OTf, CH₂Cl₂, -78 °C, 1 h; 91% yield).²³⁷ However, this favorable configuration is not maintained when the phenyl group is replaced by an alkyl group, due to enolization in the latter case. The silyl enol ether from **519**, generated in situ, cyclizes with trimethylsilyl triflate to a 2:1 mixture of (4R)- and (4S)-**520** (69% yield for two steps).²³ $$(i-Pr)_3SiO \longrightarrow \begin{cases} Ph & EtO_{2}Ph \\ S & S & O \\ H & CH_2Ph \end{cases} \longrightarrow \begin{cases} PhCH_2N & NCH_2Ph \\ H & S & H \\ C(O)Ph \end{cases}$$ $$SiB \longrightarrow \begin{cases} CH_2Ph & NCH_2Ph \\ S & H \\ C(O)Ph \end{cases}$$ $$SiB \longrightarrow \begin{cases} CH_2Ph & NCH_2Ph \\ S & H \\ CH_2Ph & O \end{cases}$$ $$SiB \longrightarrow \begin{cases} CH_2Ph & NCH_2Ph \\ H & S & H \\ CH_2Ph & O \end{cases}$$ The cyclization of ketal **193** to indolizidine
192 with concentrated HCl in methanol (reflux, 21 h) proceeds in 78% yield with high *cis* stereoselectivity; however, the reaction may actually involve intermediate vinyl ether **521**, derived from opening of the 1,3-dioxolane ring. 127,132 This type of N-acyliminium ion cyclization, based on a reactive nucleophile derived from a cyclic ketal, plays a key role in the syntheses of intermediates en route to methyl daphniphyllate (eq 54) 229 and *Aspidosperma* alkaloids (eq 55). 230 Enol ethers for N-acyliminium ion cyclization can be generated amidst a 2-aza-Cope rearrangement (eqs 42^{165} and 176^{154}), and this approach can be convenient and efficient. Interestingly, since the phenylthio and acetoxy β -lactams **522** and **523**, respectively, are not good substrates for N-acyliminium ion generation/[3,3] rearrangement/cyclization, per eq 42, it became necessary to employ the chloro substituent and silver-assisted ionization to drive the cyclization. 165 Vinyl thioethers have been used in *N*-acyliminium ion cyclizations more commonly with the alkene activated by two sulfur groups, in the form of a 1,1-bisthioether (ketene dithioacetal). There is just a single report of a cyclization of an alkene with one sulfur group (eq 46). ¹⁸² This route relies on a regioselective sodium borohydride partial reduction of the endocyclic imide carbonyl and cyclization under special mercury(II)-assisted acidic conditions. The ketene dithioacetal-terminated cyclization serves to control the regioselectivity in favor of the exocyclic mode by forming a stabilized dithiocarbocation intermediate. The reaction in eq 45 affords pyrrolizidine 117 in 68% yield by a 5-exo-trig cyclization, while the configuration at the bridgehead carbon (C3a) is controlled by the acetoxy group. 179 Similar cyclizations of enantiomerically pure 118181 and **119**¹⁸³ (MeSO₂Cl, Et₃N, CH₂Cl₂, 0 to 23 °C, MeCN added at 23 °C as an accelerant) also proceed well (85% and 60% yield) by 5-exo-trig and 6-exo-trig routes to pyrrolizidine 524 and indolizidine 525, respectively. Although dithioalkenes 526a and 526b cyclize in 80–85% yield by 5-exo-trig and 6-exo-trig routes, respectively, 178,180 the yield suffers for the corresponding 7-exo-trig reaction involving 526c (48%). This ketene dithioacetal cyclization can be quite useful for sensitive systems, as noted in the clean conversion of isomeric β -lactams **527** to carbapenams 528 in 73% yield with mesyl chloride and triethylamine (MeCN, 0 to 23 °C, then reflux for 4 h).184 #### 3.4.3. Vinylsilanes With vinylsilane nucleophiles, the N-acyliminium ion cyclization is directed to the silicon-bearing alkene carbon because of stabilization of the resultant carbocation by the " β -silyl effect". Vinylsilanes are not especially reactive nucleophiles compared to allylsilanes and vinyl thioethers, so side reactions, such as proto-desilylation, sometimes intervene. The first examples of silicon-directed cyclizations were conducted as extensions of Mannich cyclizations (eq 177). 167,169 Quinolizidine **530a** and indolizidine **530b** are readily formed from **529a** and **529b** with trifluoroacetic acid at room temperature (formic acid is much less effective). ¹⁶⁷ The production of indolizidine **530c** from **529c** requires a higher temperature and still is not obtained in a comparable yield, presumably because the bromo substituent deactivates the alkene. ^{167,169} Various alkoxy-substituted substrates cyclize with high stereoselectivity (e.g., eq 43^{173}), although some reactions are problematic on account of low yields or mixed stereochemical results. ^{138,216} A terminal alkene substituent appears to be critical for good stereocontrol, and this condition is satisfied by the bulky (*Z*)-trimethylsilyl group. ^{171–173} In trifluoroacetic acid, crude **111** (from imide reduction) reacts to give **531** in 87% yield (ca. 85% purity); ¹⁷¹ however, in formic acid, proto-desilylation occurs and no cyclization product **532** is obtained.¹⁷¹ With a cyclic ketal present, the cyclization of 5-acetoxy lactam **533** to **534** proceeds well with boron trifluoride etherate (eq 178), but the corresponding 5-hydroxy lactam substrate does not give **534** under various conditions.¹⁷² Lewis acids may be beneficial relative to protic acids for such vinylsilane cyclizations. Indeed, boron trifluoride etherate promotes a clean cyclization of (Z)-vinylsilane **112** (eq 43),¹⁷³ and titanium(IV) chloride is useful in converting **535** to **536** (eq 179).¹⁷⁰ Steric encumbrance in the cyclization of **537** leads to substantial proto-desilylation, such that the yield of **538** is merely 22%.¹⁷⁰ However, the production of **538** from the non-silyl-substituted analogue **539** is more satisfactory (65% yield).¹⁷⁰ Vinylsilanes **540**–**542** do not cyclize to bridged azabicyclic compounds with formic acid (23 °C or reflux), trifluoroacetic acid, tin(IV) chloride (23 °C), or titanium(IV) chloride (-78 or 23 °C).⁵²² The only identifiable products emerge from the elimination of ethanol and/or proto-desilylation. These adverse results contrast sharply with the successful formation of aza[3.2.1]bicyclooctanes from allylsilanes (e.g., $138 \rightarrow 139$), 202,203 which is reflective of the limitations of vinylsilane reactivity. *N*-Acyliminium cyclizations have been effected with acyclic vinylsilanes. 164,168,174,176,177 Enantiomerically pure (*Z*)-vinylsilane **543** leads to epimeric products **544** and **545** (BF₃·Et₂O, CH₂Cl₂, 0 °C; 71% yield; 1:1 ratio) without significant racemization (95% ee) 174 (note: first thought to give a 1:1 mixture **544** and **545**, each as a racemate¹⁶⁸). (*E*)-Vinylsilane **546** also cyclizes with complete retention of relative and absolute configuration in **547** (eq 180).¹⁷⁷ Pipecolic acid derivatives **549** are obtained from *N*-acyliminium ions derived from enantiomerically pure amino acids **548** (eq 181). The stereospecificity is not rigorously conserved in this process, in that **549b** has 88% ee (presumably due to minor racemization via a 2-aza-Cope rearrangement). In N-acylhydrazonium ion cyclizations of vinylsilanes, 427,428 there is a dramatic difference in reactivity between the E and Z forms. 428 For example, (E)-550 reacts with tin(IV) chloride via a chairlike conformer to give the β -silyl carbocation 551, in which stabilization by the silicon atom and subsequent elimination is geometrically disfavored; consequently, ring contraction via the aziridinium ion 552 occurs to give 553 in 68% yield (eq 182). 428 On the other hand, a mixture of (Z)- and (E)-550 (ca. 1:1 ratio) gives a mixture of 553 and 554 in 82% yield (2:3 ratio). #### 3.4.4. Allylsilanes and Allylstannanes^{523–527} Allylsilanes are normally exemplary participants in N-acyliminium cyclizations; also, they often en- gender excellent stereocontrol. $^{166,177,185-209}$ The β -effect of the silicon atom is a powerful determinant of the regiochemistry of allylsilane reactions with electrophiles, so the new carbon—carbon bond is formed at the vinyl carbon distal to silicon, that is, at the γ -position. Early studies involved nitrogen-linked cyclic N-acyliminium ions. 188,204 Reactions of (Z)- and (E)-alkenes **123** (CF $_3$ CO $_2$ H) and **124** (HCO $_2$ H) produce vinylpyrrolizidine **125** in 70–85% yield as a single "syn" stereoisomer (vicinal hydrogens syn). 188 Homologous (Z)-alkenes **128** and **129** give **130** and **131** with good yields, each as a single "antt" isomer. 188 The corresponding stannane **133** also provides **125** with high stereoselectivity in 77% yield. 211,212 The cyclization of **136** to **137** (eq 47) proceeds with high stereoselectivity in the opposite direction (vicinal hydrogens syn). 191 Steric bulk must interfere with the addition mode in the mechanistic model **132** to force the alkene nucleophile to add from the opposite side of the N-acyliminium ion. Cyclizations of nitrogen-linked allylsilanes with a terminal alkene are useful in the synthesis of indolizidine and quinolizidine derivatives. ^{185,193–198} In syntheses of (+)-myrtine ¹⁹⁸ and (–)-lasubines, ¹⁹⁶ *N*-acyliminium ions **555** and **556** cyclize to **557** and **558**, ¹⁹⁶ both as isomeric mixtures ($\mathbf{a/b} = 3.7$ and 3.1, respectively). The product isomer ratios (a/b) in the trifluoroacetic acid cyclization of rac-556 to rac-558 are temperature dependent, ranging from 1:4 at −78 °C to 2:1 at 20 °C. 193,197 In general, these reactions are not very diastereoselective, in contrast to the corresponding ones without a silicon group. A limitation of this method is illustrated by the reactions of hydroxy lactams **559–563**. 194 The formation of fivemembered rings from 559 and 560 with trifluoroacetic acid fails, as only proto-desilylation products are detected. Cyclization also fails when the ethoxy lactam of **559** is treated with titanium(IV) chloride, tin(IV) chloride, or boron trifluoride etherate. Nevertheless, **561**–**563** successfully cyclize in trifluoroacetic acid to **564–566** with yields of 70%, 94%, and 78%, respectively. Pyrrolidines and piperidines with an allylsilane tethered to the ring carbon adjacent to the *N*-acyliminium carbon cyclize to hexahydrocyclopenta-[*b*]pyrroles²⁰⁷ and octahydroindoles^{186,194} (e.g., eq 50²⁰⁷) with *cis* stereoselectivity. This process provides a basis for a formal total synthesis of mesembrine, ^{186,194} wherein the cyclization is executed under nonacidic conditions to avoid isomerization of the double bond in the product (eq 51). Double bond isomerization occurs when trifluoroacetic acid is used, leading to a mixture of olefin isomers. Also, in the acid-catalyzed tandem Pummerer/*N*-acyliminium cyclization of **567** to **568**, the carbon—carbon double bond isomerizes into the ring (eq 183; position of the SiMe₃ $$P$$ -TsOH CO_2Me P -TsOH e -reflux P -Do e -reflux -re double bond in
568 is uncertain). The 1-azabicyclo-[3.1.0] pentane skeleton is nicely accessible by generating a fused cyclopropane ring via an N-acyliminium cyclization of an allylstannane (eq 184); **570** is obtained from **569** in good yield with the vinyl exclusively exo. Allylsilane-based cyclizations offer a practical approach to bridged azabicyclic molecules, sometimes with good stereocontrol. 199–203,208 Reaction of ethoxypyrrolidin-2-one **138** in formic acid provides azabicyclo-[3.2.1] octanes **139** in 87% yield with a 95:5 **a/b** ratio, in favor of the *endo* vinyl group. 202,203 This cyclization proceeds less efficiently in trifluoroacetic acid because of a 12% yield of the proto-desilylation product **571**. In contrast to the pyrrolidin-2-one, piperidin-2-one **140** gives homologous azabicyclo[3.2.2]nonanes **141** with little stereochemical bias (eq 48). 202,203 The stereochemical outcome is reversed with a one-methylene linker to the allylsilane in that piperidin-2-one **142** gives azabicyclo[2.2.2]octanes **143** in 94% yield with a strong *endo* preference (**a/b** = 94:6), while pyrrolidin-2-one **144** gives azabicyclo[2.2.1]-heptanes **572** in 66% yield with little stereochemical bias. ²⁰² With a three-methylene linker, pyrrolidin-2-one **145** gives azabicyclo[4.2.1]nonanes **146** in 73% yield, mainly as the *exo* isomer ($\mathbf{a/b} = 8.92$), along with side product **573** (12% yield). To form an eightmembered ring in a bridged azabicyclic compound, it is advisable to employ a Lewis acid catalyst. ^{202,203,222} However, in the treatment of **574** with tin(IV) chloride, azabicycle **575** is garnered in only about 20% yield because of a substantial amount (ca. 80%) of proto-desilylation to **576**. By comparison, the analogous propargylsilane-based cyclization to a bridged eight-membered ring is much more propitious (eq 185). 203,222 Generally, good yields of azabicyclic com- pounds are obtained when new five-, six-, or sevenmembered rings are created, although the best yields occur in the six-membered-ring cases. The presence of an activated alkene, such as an allylsilane, is critical for the formation of bridged bicyclic molecules. For example, treatment of **577** with trifluoroacetic acid yields only the elimination product **578**.^{202,203} Bridged bicyclic compounds can be generated with substrates possessing exocyclic *N*-acyl or *N*-sulfonyl groups. ^{199–201,208} 5-Hydroxypyrrolidines from the partial reduction of **579** and **580** afford **581** (*endo*) and **582** (exo/endo = 19:1) in ca. 75% yield.²⁰⁸ Bicyclo-[4.2.1]nonane **584**, a precursor to anatoxin, is obtained from **583** by a titanium(IV) chloride-based N-tosyliminium cyclization (eq 186).^{201,209} An analogous N-tosyliminium/allylsilane cyclization, used in the synthesis of sarain A, did not work with titanium-(IV) chloride or boron trifluoride etherate because of significant proto-desilylation, but it did proceed well with anhydrous iron(III) chloride (eq 49). 199,200 By comparison, standard alkene **585** did not yield any desired polycyclic material with iron(III) chloride. Bridged bicyclic hydrazides, such as **587**, are formed via the cyclization of hydrazonium ion precursors, such as **586** (eq 187).²⁰⁵ Allylsilane cyclizations of acyclic N-acyliminium ions can readily supply vinylpiperidines and vinylpyrrolidines, at times with excellent stereocontrol. 166,187,189,190,192 For example, treatment of **154** with diethylaluminum chloride gives only the E-isomer **155** in 69% yield. 187 By contrast, the trimethylene homologue **156** yields **157** with minimal stereoselectivity (Z/E=2:1) in 60% yield. "Glycine cation equivalents" extend this method to the synthesis of proline and pipecolic acid derivatives. 189 Cyclizations of **150** and **152** (MsCl, Et₃N) afford **151** and **153** in 88% and 79% yields (Z/E=11:89 and Z/E=55:45, respectively). 189 Despite such positive results, a similar reaction with **588** does not yield the desired **589**. 192 The glycine-cation method with alkenes de- void of special activation can lead to complex stereochemical results on account of the 2-aza-Cope rearrangement. Although hydrazide **590** cyclizes to alkene **591** or trifluoroacetate **592**, depending on reaction conditions (eq 188), a ring-contrac- tion pathway, such as with $550 \rightarrow 553$, is adopted when the silyl-directing group is missing.⁴⁴⁷ An acyclic reaction with a more substituted substrate, **593**, gives **594** with complete stereospecificity (eq 189).¹⁷⁷ The cyclization of *N*-sulfonyliminium ions from silyl-substituted (*E*)-alkenyl aldehydes proceeds efficiently to stereodefined amido cycloalkenes (eq 70). 306 From a synthetic perspective, *N*-acyliminium cyclizations of acyclic allylsilane substrates have provided key intermediates en route to gelsemine (eq 190) 190 and α -allokainic acid (eq 191). 192 #### 3.4.5. Allenes Terminal allenes can function as π -nucleophiles in N-acyliminium cyclizations, but only limited studies are reported in this area. The set of ethoxy lactams **600** react by two different pathways according to the substitution pattern, one leading to indolizidines and the other to pyrrolizidines. ^{153,429} On treatment of **600a** with formic acid a new six-membered ring is formed, giving rise to indolizidines **601**–**603**, as well as some 2-aza-Cope byproduct **604** (96% yield; 2:1: 1:2 ratio). A cleaner reaction ensues with **600b** and **600c** to produce indolizidines **605** and **606** in quantitative yield. However, **600d** affords a 4:1 mixture of pyrrolizidines **607** and **608** (94%) stereoselectively, both of which emerge from a 2-aza-Cope rearrangement involving the N-acyliminium ion **609**. 153,429 Interestingly, **610a** and **610b** furnish an entirely different type of product in seven-membered ringfused ketones **611a** and **611b**, presumably due to the bulky dimethyl substitution, which impedes attack of the *N*-acyliminium ion on the central allene carbon (eq 192). ^{154,429} Thus, the reaction favors formation of Me OH $$\frac{HCO_3H}{Mc}$$ $\frac{HCO_3H}{Mc}$ $\frac{HCO_3H}{Mc}$ $\frac{HCO_3H}{Mc}$ $\frac{Mc}{Mc}$ $\frac{Mc}{Mc}$ $\frac{610}{b: X-S}$ $\frac{611a}{611b}$ $\frac{(.9\%)}{611b}$ $\frac{(.9\%)}{611b}$ secondary products from attack at the allene terminus with subsequent solvent trapping of the intermediate vinyl carbocation. In the absence of dimethyl substitution, as in **612**, six-membered-ring closure proceeds smoothly to give **613** (eq 193).⁵²⁸ An allene-terminated *N*-acyliminium cyclization played a key role in the total synthesis of gelsedine. Treatment of (3*S*,4*S*)-pyrrolidinone **614** with formic acid at 85 °C, followed by methanolic ammonia to hydrolyze the formate ester, supplies enantiomerically pure azabicyclic keto lactam **615** in 79% yield. Notably, the hydroxyl does not in- terfere with the cyclization, perhaps because it is first converted to a formate ester in situ. Although cyclization of the corresponding alkyne, **616**, is more sluggish, a 52% yield of **615** is still obtained. The introduction of suitable functionality at C4 of the 8-azabicyclo[4.2.1]nonane system is based on an iodide-terminated *N*-acyliminium cyclization, ⁴⁸⁵ such that allene **614** is readily converted to vinyl iodide **617**, albeit in just 42% yield (eq 194). ^{529,530} #### 3.4.6. Enols and Enolates Active methylene and methine groups can participate in *N*-acyliminium ion cyclizations via their enol or enolate forms. Enol nucleophiles supply products that are analogous to those from vinyl ether nucleophiles. In cases where a ketal group is being cleaved during cyclization, or where a ketone cyclization is promoted by an alcoholic mineral acid, it can be unclear as to whether an enol/enolate or a vinyl ether is the crucial reacting moiety. A vinyl ether from partial cleavage of a ketal may be a more likely reactant under nonaqueous conditions, since the ketone may not be liberated. Specialized versions of the N-acyliminium cyclization of enols/enolates include the cyclocondensation of imines with carboxylic anhydrides²²⁷ and the formation of β -lactams via the Staudinger reaction.^{20,227} The former will be mentioned in this subsection, but the latter will not be discussed. There are several reports of unambiguous N-acyliminium ion cyclizations with ketone enols. $^{231,323,336,499,531-533}$ Representative examples involving an isolated ketone and a β -keto ester are depicted in eqs 74^{323} and $76,^{336}$ respectively. An improved 97% yield of the indolizidine product in eq 76 is obtained by treating ketal ester **618** with formic acid. 531 Although β -keto ester **619** is converted to the tricyclic compound **620** in 58% yield with boron trifluoride etherate, 532 the related reaction of isolated ketone **621** does not give **622**; rather, the *N*-acyliminium ion leads to an intermediate enamide that reacts at the carbonyl carbon to give **623** (eq 195). 499 The *N*-acyliminium ion cyclization of an enol is capable of forming a new five-membered ring (eq 196),⁵³⁴ even though this 5-*endo*-trig process is highly disfavored in the cyclization of a standard alkene (vide supra). Indeed, cyclization of keto aldehyde amide **624** to *cis*-cyclopenta[b]pyridine **625** with triflic acid (via putative intermediate **626**) proceeds in 72% yield without interference from the N-allyl group, cyclization of which would occur by a 5-*endo*-trig process (note: weaker acids led to unwanted byproducts). A notable ketone-based N-acyliminium cyclization is a key step in the synthesis of gelsemine, whereby bromo enamide **197** is converted to the bridged polycycle **198** (CF₃CO₂H, 85% yield).²³¹ Certain protocols for conducting enol-type *N*-acyliminium ion cyclizations may entail an enol ether from the partial opening of a ketal substrate or from addition of an alcohol to a ketone
substrate, rather than a free enol/enolate form of the ketone. A case in point is the *cis*-stereoselective conversion of cyclic ketal **193** to octahydroindole **192** with concentrated HCl and methanol (reflux; 78% yield), en route to mesembrine. ^{127,132} Since free methyl ketone **627** cy- clizes readily in 65% sulfuric acid to **192**, along with some troublesome impurities, the one-step methanol—HCl process is more effective. The cyclization of ketone **628** to 9-azabicyclo[4.2.1]nonane **629**, en route to (+)-anatoxin-a, appears to involve the enol form of **628** (eq 197); however, formation of methyl vinyl ether **630** may intervene to propel the reaction (cf. eqs 74, 149, and 150). 1,3-Diester (malonate) derivatives can also serve as good substrates for this type of N-acyliminium cyclization^{535,536} (e.g., eq 198⁵³⁶). However, a single ester group is not sufficient to allow for an enol-type N-acyliminium ion cyclization.⁵³⁵ An enolate-based N-acyliminium cyclization that is useful in the synthesis of isoquinoline alkaloids involves the condensation of imines and cyclic anhydrides. 227,244-276 This approach is illustrated by the reaction of succinic anhydride with PhCH=NMe in eq 58.²⁴⁴ The reaction transpires well with succinic, glutaric, or homophthalic anhydrides and with benzaldimines. The benzoyl carbonyl of homophthalic anhydrides reacts preferentially, thereby controlling the regiochemistry. 227,265 The *trans/cis* isomer ratio can vary according to the solvent employed or the benzaldimine substituents (eqs 60 and 61), with benzene giving a high proportion of trans isomer. 265 Boron trifluoride etherate results in exclusive formation of trans-isoquinolones, as well as an expanded reaction scope.²⁷³ (*Z*)-Imines, such as **213**, give *trans*isoquinolones, such as 214, almost exclusively in the absence of equilibrating conditions. 265,276 An asymmetric *trans*-isoquinolone synthesis with an enantiomerically enriched chiral imine (eq 62) provides each enantiomer of corynoline with a high enantiomeric purity. 266 #### 3.5. Reactions of Alkynes Alkynes are useful nucleophilic terminators for *N*-acyliminium ion cyclizations, and ring closure proceeds through an *exo* or *endo* vinyl cation intermediate (viz. **174** and **175**), which is captured by solvent or an available anion. ^{15,188,189,202–205,208,218–226} With oxygen-based nucleophiles, such as formate or acetate, a ketone group is usually obtained at the site of cyclization due to facile hydrolysis of the acyloxyalkene product during aqueous workup. Alkynes are generally less reactive as nucleophiles, so reaction times are often protracted (>24 h). In general, *endo* cyclization is strongly favored with terminal acetylenes. ^{43,46} #### 3.5.1. Standard Alkynes ω -Alkoxy lactams bearing a terminal alkyne on nitrogen undergo *endo* cyclization to form new six-, seven-, eight-, and 15-membered rings within bicyclic keto lactams in good yields (eq 199). 43,46,125,136,143,156 With a short linker to the acetylene group, as in **632a**, this cyclization is not viable. ⁴⁶ It is noteworthy that the cyclization of 6-ethoxypyrrolidin-2-one 632b provides an excellent 97% yield of indolizidine 633b at ca. 0.3 M, 43,46 whereas the reaction of 6-ethoxypiperidin-2-one 9 at ca. 0.2 M leads to ca. 20% yield of dimeric byproduct 11 (viz. eq 8) in addition to desired quinolizidine 12. At a higher dilution (ca. 0.01 M) dimer 11 vanishes and only quinolizidine 12 is obtained. The closure of seven- and eight-membered rings (m = 2 and 3) proceeds quite well via an *endo* pathway (eq 199). The facile formation of an eightmembered ring in **633d** is remarkable in comparison with the poor cyclization results found with the corresponding alkene substrates. 46 Treatment of methoxy-substituted pyrrolidin-2-one 189 with formic acid also generates an eight-membered-ring product, 191 (no yield reported). 138 Macrocyclization is also feasible, provided that high dilution is employed, as in the conversion of **632e** to **633e**. 156 Although bicyclic hydroxy lactam **634** cyclizes in formic acid to **635** in 84% yield, 636 fails to cyclize because of enamide formation and subsequent olefin migration. 143 ω-Alkoxy lactams with a terminal alkyne on the lactam 3-position yield bridged bicyclic products. For example, the formic acid cyclization of **637** furnishes **638**, albeit in a modest 37% yield because a seven- membered ring is being formed. A six-membered ring can be generated more successfully, as in the conversion of lactam **176**, with the alkyne linked at the 3-position, to octahydroindole **177** (HCO $_2$ H, 120 h; 85% yield; only *cis* stereochemistry). ^{127,132} Heteroatom-containing *N*-acyliminium ions cyclize onto a terminal acetylene in a similar manner. ^{156,429,484,485,523} Thiazolidinones **639** and **640** give bicyclic ketones **641** (80% yield) and **642** (70% yield), respectively, ^{429,484} and **643** gives macrocycle **644** (76% yield). ¹⁵⁶ However, the yield of **646** from 6-ethoxythiazinone **645** is reduced to 45%, presumably because of enamide formation. ⁴⁸⁵ In fact, enamide **648** is the only tractable product when oxazinone **647** is treated with formic acid (ca. 25% yield). ⁴⁸⁵ Internal alkyne substrates can yield *exo* or *endo* products, depending on the structural features. 43,46,218,220,223,224,493 Methyl-substituted alkyne **181** cyclizes in formic acid over 5 days to a mixture of *endo* and *exo* regioisomers **182** and **183** in 90% yield, with a strong preference for **197** (*endo/exo* = 90:10). 43,46 However, the piperidinone homologue **184** gives the opposite result, generating mainly the *exo* regioisomer **185** in 92% yield (*endo/exo* = 15:85). When the alkyne group is separated by one more methylene, as in the conversion of **186** to **187** (88% yield), only *exo* products are formed. 43,46 This *exo* preference holds for the related cyclization of **649a** to **650** (eq 200). 493 By contrast, the corresponding MeO TiCl₄ CH₅Cl₂ $$\xrightarrow{-78 \text{ to } 23 \text{ °C}}$$ \xrightarrow{R} $\xrightarrow{659}$ $\xrightarrow{650}$ $\xrightarrow{650}$ $\xrightarrow{651}$ \xrightarrow{B} \xrightarrow{B} \xrightarrow{B} \xrightarrow{B} $\xrightarrow{82\%}$ $\xrightarrow{9\%}$ $\xrightarrow{$ terminal alkyne, **649b**, cyclizes exclusively by an *endo* cyclization to form a new seven-membered ring and give **651** in 70% yield (eq 200).⁴⁹³ Sensitive β -lactam substrate **652**, with an internal alkyne, cyclizes via a glycine cation-type *N*-acyliminium ion exclusively by an *exo* pathway to yield **653** (eq 201).²²³ A more complex cyclization of this type served a central role in a formal enantiospecific synthesis of the carbacepham antibiotic loracarbef (eq 202).²²³ The terminal alkyne analogue **654** cyclizes with tin(IV) chloride only by an *endo* pathway to give **655** as a single isomer in just 12% yield (which was not improved by addition of nucleophilic salts, such as NaI).²²³ However, treatment of the internal alkyne **656**, possessing a terminal silyl group, with tin(IV) chloride produces only the *endo* cyclization product **657** in 71% yield.²²³ In summary, internal aliphatic alkynes are inclined to cyclize by an *exo* pathway in the absence of ring strain; phenylthio-, phenyl-, and bromo-substituted alkynes (e.g., **178** and **180**) evince a strong preference for the *exo* regiochemistry, ^{218,225,226,486,487} but a silyl-substituted alkyne favors the *endo* regiochemistry. When a second carbon-based nucleophile is present, the intermediate vinyl cation can react further, in a tandem reaction, to yield tetracyclic products. ^{129,131,136} Lactams **658** and **659** in formic acid give azasteroids **660** (54% yield)¹³¹ and **661** (38% yield), ¹³⁶ which derive from the capture of an intermediate *endo* vinyl cation by the phenyl group. By contrast, thiazolidinone **662** fails to cyclize even under more strenuous conditions, probably due to steric hindrance. ⁴²⁹ A carbamate group can participate in the Lewis acid-catalyzed alkyne cyclization to yield tricyclic products (eq 203).²²⁴ The *N*-carbalkoxyiminium ion reacts with the alkyne via a formal intramolecular [4+2] polar cycloaddition that results in an \emph{exo} ring closure. 224 To arrive at a suitable geometry for cyclization, an exocyclic N-acyl group is necessary. In eq 203, it is noteworthy that very high α (or trans) stereoselectivity is obtained with propargylsilane **663c** and phenylacetylene **663d**, and that **663c** does not lead to any allene-containing products, as might be expected from a conventional N-acyliminium ion cyclization of a propargylsilane (vide infra). Substitution of **663a** with a methyl group, as in **664**, results in the exclusive formation of the β (cis) product **665** in 69% yield.²²⁴ #### 3.5.2. Propargylsilanes There are numerous examples of cyclizations in which propargylsilanes are effective nucleophiles. 175,188,189,203-205,208,219,221,222,395,428,522,537,538 The ring closure is usually accompanied by elimination of the silicon moiety from the incipient, exocyclic vinyl cation to form an allene as the ultimate product. Treatment of **666a** with trifluoroacetic acid yields solely the air-unstable bicyclic allene **667a**, while homologues **666b** and **666d** give **667b** and **667d**, and **666c** gives the seven-membered-ring product **667c** (eq 204). ^{188,204} It is significant that proto-desilylation does not occur in these reactions. ^{188,204} The synthetic utility of this method can be appreciated by the enantiospecific synthesis of pyrrolizidine **669** from **668** (eq 205). ³⁹⁵ The propargylsilane approach is quite useful for the synthesis of monocyclic allenes. Reaction of hemiaminal derivatives **670a** and **670c** with formic acid affords allenes **671a** and **671c** in yields of 68% and 74%,⁵³⁷ with a minor amount of
competing hydrolysis and proto-desilylation. However, proto- desilylation prevails in the formic acid cyclization of **670b** to **671b**, although it can be suppressed by using a Lewis acid catalyst. Thus, the reaction of **670b** with diethylaluminum chloride gives **671b** in 55% yield. The formic acid cyclization of carbamate **672** proceeds readily to allene urethane **673** in a reasonable yield. ¹⁸⁹ Carbamates **674a** and **674b** combine with paraformaldehyde in formic acid to produce **675a** and **675b**, each in 54% yield (eq 206). ¹⁸⁹ In a similar vein, the butyl α -acetoxyacetate of **674a** (from **674a** and butyl glyoxalate, followed by acetic anhydride/pyridine) is converted to the proline ester analogue of **675a** in ca. 50% yield with the aid of diethylaluminum chloride (CH₂Cl₂, 0 to 20 °C, 2 h). ¹⁸⁹ NHCO₂Me $$(CH2)n$$ $$(CH2O)n$$ $$HCO2H$$ $$17 h$$ $$CO2Me$$ $$674 a: n = 2$$ $$b: n = 3$$ $$b: n = 2$$ $$(54\%)$$ $$b: n = 2$$ $$(54\%)$$ Bridged azabicyclic compounds with appended allene groups can be readily obtained. 202,203,208,219,221,222,538,539 A noteworthy enantiospecific conversion, involving a cyclic N-acyliminium ion with an alkyne chain attached α to the lactam carbonyl, is shown in eq 207. 219 While at- tempts to access this aza[3.2.1]bicyclic ring system by cyclization of a (Z)- or (E)-vinylsilane failed, 522,538 analogous cyclizations of various propargylsilanes (e.g., **676a**-**e**) worked well to provide azabicycles (e.g., **677a**-**e**) in 80-98% yields. A remarkable $$(CH_2)_n \qquad (CH_2)_m \qquad (CH_2)_n$$ $$Ph \qquad (CH_2)_n \qquad (CH_2)_n$$ $$Ph \qquad (CH_2)_n \qquad (CH_2)_m$$ $$676 \ a: m-1; n-1 \quad d: m=0; n=1$$ $$b: m-2; n=1 \quad e: m=0; n=2$$ $$c: m=1; n=2$$ $$e: m=0; n=1$$ result, mentioned earlier, is the high-yield formation of a new eight-membered ring in a Lewis acidinduced cyclization (eq 185).^{202,203,222,522} Although formic acid is not effective for this transformation (<10% yield of product), it has been useful in related cases of bridged bicycle formation.^{202,222} In addition, **678** is converted to **679** with formic acid in excellent yield (87%) en route to gabaculine.^{522,538} Good results are obtained when the alkyne chain is tethered α to the acylated nitrogen. ^{208,221} By way of illustration, in a total synthesis of (–)-epibatidine, azabicyclo[2.2.1]-heptanes **680** are formed enantiospecifically in good yield (eq 208). ²²¹ Also, the *N*-acylhydrazonium ion cyclization of **681** gives a diazabicyclo[2.2.1]heptane product in 62% yield (eq 209). ²⁰⁵ HO $$R$$ $R = CO_2Me \text{ or } p$ -Ts R R (208) $$\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{N} \\ \text{CO}_{2}\text{Me} \\ \text{HO} \\ \end{array} \begin{array}{c} \text{SiMe}_{3} \\ \text{CH}_{3}\text{Cl}_{3} \\ \text{CH}_{2}\text{Cl}_{3} \\ \end{array} \begin{array}{c} \text{Me} \\ \text{N} \\ \text{N} \\ \text{Me} \\ \end{array} \begin{array}{c} \text{N} \\ \text{N} \\ \text{(209)} \\ \end{array}$$ # 3.6. Reactions of σ -Nucleophiles (Carbocyclizations) The vast majority of N-acyliminium ion cyclizations at carbon centers pertain to the reaction of π -nucleophiles, such as benzenoids, alkenes, and alkynes. Alternatively, cyclization could occur at saturated carbon centers, that is, σ -nucleophiles. Since there are only isolated examples of such reactions, this area holds considerable promise for future applications in organic synthesis. Organometallic species can serve as reactive σ -nucleophiles, although this poses certain constraints. The organometallic groups must be reactive enough to undergo the N-acyliminium cyclization but be robust enough to withstand the required acidic conditions. That is, the requisite functionality must not be otherwise destroyed prior to execution of the ring closure. Thus, it is not surprising that an alkylstannane can satisfy this purpose. 540,541 A general route to compounds with a cyclopropane fused onto a lactam involves cyclization of α -stannylmethyl N-acyliminium ions (eq 210). 540,541 This approach was originally developed for destannylative ring closure with a π -nucleophile, as in the conversion of **569** to **570** (eq 184), ²¹² and is quite useful for preparing enantiomerically pure 4,5-methanoproline via a key N-acyliminium carbocyclization in the three-step conversion of **682a** to **683a**. ⁵⁴¹ This method is sufficiently versatile to construct a fused five-membered ring in the homologous conversion of **682b** to **683b** (eq 211). ⁵⁴¹ $$(CH_{2})_{n}SnMe_{3} \qquad 1) LiBHE_{13} \qquad H$$ $$CO_{2}-t-Bu \qquad 2) CF_{3}CO_{2}H \qquad (CH_{2})_{n} \qquad (CH_{2})_{n} \qquad (CH_{2})_{n}$$ $$CO_{2}-t-Bu \qquad 3) Bu_{i}NF, THF \qquad (CH_{2})_{n} \qquad (CH_{2})_{n} \qquad (211)$$ $$682 \quad a: n = 1 \qquad (CH_{2})_{n} (CH_{$$ Another means to access a σ -nucleophile pathway (carbocyclization) is through carbocation rearrangements. A semipinacol-type rearrangement serves this purpose nicely in the context of an N-tosyliminium cyclization leading to azaspirocycles. For example, cyclobutanols **684a** and **684b** rearrange on treatment with camphorsulfonic acid to **685a** (13 h) and **685b** (144 h), according to the process outlined in eq 212. For **684b**, the use of HCl gives **685b** with a highly biased ratio of 14:1 (0 °C, 48 h). This type of reaction fails for a related cyclopentanol substrate but succeeds in a titanium(IV) chloride-promoted rearrangement of epoxide **686** to azaspirocycle **687** in an exceptional 96% yield (-78 °C, 30 min). #### 3.7. Reactions on the Solid Phase Given the popularity of solid-phase organic synthesis, it is not surprising to see some applications based on N-acyliminium ion chemistry. $^{5\hat{4}\hat{3}-546}$ One example is the synthesis of multifunctional heterocyclic scaffolds via tandem N-acyliminium ion cyclization-nucleophilic addition on a TentaGel-OH resin.543 Although most of the routes involve trapping of the resin-bound N-acyliminium ion with heteroatom nucleophiles, carbon-carbon bond formation is exemplified by the reaction of indole π -nucleophiles with piperazinone-based ions. Treatment of 688a or **688b** with formic acid at 60 °C produces complex polycycles 689a or 689b, each in 63% yield, via a cascade entailing (1) cleavage of the acetal from the resin to form an oxacarbenium ion, (2) cyclization to piperazinium ion **690**, (3) *N*-acyliminium cyclization onto the indole 3-position, (4) trapping of intermediate indolinium ion 691 by the pendant amide nitrogen, and (5) formylation of the indoline nitrogen (eq 213). In another case, a Wang 4-benzyloxybenzyl alcohol resin⁵⁴⁷ bearing L-tryptophan is subjected to an N-acyliminium cyclization by means of sequential addition of an aldehyde (to form an imine) and Fmocprotected L-proline acid chloride (to activate the imine) (eq 214).⁵⁴⁴ A cyclization-induced cleavage from the resin provides the final pentacyclic product in yields ranging from 50 to 75%. The yields and cis/trans isomer ratios are comparable to those obtained from the solution-phase synthesis, and the reaction is tolerant of a variety of aldehydes and amino acids. This N-acyliminium protocol is noteworthy in that it avoids acidic conditions, which should allow for a diversity of solid-phase linkers. #### 4. Comparison with Other Related Methods Conventional iminium ions have been an integral part of organic synthesis for nearly 100 years in the context of the Mannich reaction, wherein a new carbon—carbon bond is formed by addition of a carbon-based nucleophile to an electrophilic imine.^{1–5} The intramolecular variant of the Mannich reaction (eq 215), generally referred to as the "Pictet—Spen- gler reaction", has been an important influence, especially in the synthesis of indole and isoquinoline alkaloids. 6-10 N-Acyliminium ions, 15-19 a subclass in the iminium ion family, usually possess higher reactivity, such that their intramolecular reactions are very versatile in synthetic applications. Structurally related iminium and N-acyliminium ions often cyclize to analogous products, with the former being an amine and the latter being an amide. As such, the workup procedure for iminium ion reactions may require neutralization of a large amount of acid to isolate the product, which can be rather inconvenient when dealing with a strong, nonvolatile acid (e.g., polyphosphoric acid). On the other hand, the workup of N-acyliminium ion reactions may just involve simple dilution with water or an aqueous salt solution. In this section, we present some comparisons between Mannich-type cyclizations and N-acyliminium ion cyclizations for structurally related systems, epecially to gain some understanding of their complementarity. Second, we offer a comparison of some analogous cyclizations involving N-acyliminium ions and α -acylamino radicals, which are cognate species that exhibit a different pattern of reactivity. Their intramolecular reactions with alkene and alkyne π -nucleophiles, in particular, give rise to different types of cyclic products. The $\it N$ -acyliminium ion reactions complement the α -acylamino radical reactions, especially with respect to the preferred size of the nascent ring. As a consequence, these two approaches can be independently useful in synthetic applications. #### 4.1. Intramolecular Mannich Reactions In general, iminium ions are comparatively weak electrophiles that often require fairly nucleophilic π bonds as reaction partners. Thus, *N*-acyliminum ion cyclizations can have a potential advantage over Mannich-type iminium ion cyclizations relative to the participation of less reactive π -nucleophiles, such as unactivated benzenoids and alkenes. Additionally, N-acyliminum ion cyclizations have an increased tendency for favorable stereochemical control, partly due to conformational and steric influences from the sp²-hybridized amide
carbonyl. One example of amide carbonyl-based control is the powerful stereochemical influence of A(1,3) strain (viz. eq 33 and $50 \rightarrow 51$). Nevertheless, for the closure of six-membered rings onto more reactive π -nucleophiles, such as alkoxybenzenes and indoles, Mannich-type cyclizations can be quite competitive, if not superior. First, it is instructive to examine some fundamental cyclizations of β -arylethylamines, which are classical substrates for the Pictet–Spengler reaction. Aldehyde-based iminium ion reactions of 3,4-dimethoxyphenethylamine^{548–551} and tryptamine^{552–555} proceed reasonably well (eqs 216 and 217); however, the cyclizations of phenethylamine^{556–558} can be difficult, with variable results (eq 218). Fortunately, the scope of the Pictet—Spengler process has been broadened by the use of trifluoroacetic and triflic acids.⁵⁵⁸ In the case of related *N*-acyliminium ion cyclizations, 3,4-dimethoxyphenethylamine,³⁶³ tryptamine,³⁴⁰ and a. TfOH/CF₃CO₂H (9:1) phenethylamine 293,340 furnish equivalent or better yields (eqs 219–222). Significantly, the *N*-acyliminium cyclization of an unactivated benzene proceeds effectively under milder reaction conditions. The relative merits of N-acyliminium ion and iminium ion cyclizations can be further appreciated from some examples in which the two methods can be compared directly, 168,172,475 or in which some notable synthetic issues arise. 228,229 Enantiopure (Z)-vinylsilane **543** reacts in an N-acyliminium ion cyclization to give tetrahydropyridines **544** and **555** (1:1 mixture) in 71% yield with boron trifluoride etherate at 0 °C. 168,174 In a corresponding Mannich reaction, (Z)-vinylsilane **692** affords tetrahydropyridines **693** and **694a** (1:1 ratio) in 85% yield with trifluoroacetic acid at 60 °C, and (Z)-vinylsilane **695** affords tetrahydropyridine **694b** in 51% yield with AgBF₄ at 100 °C. ¹⁶⁸ (Z)-Vinylsilane **533** cyclizes solely to indolizidine **534** with boron trifluoride etherate at 0 °C in 45–72% yield, depending on the reaction scale (eq 178), ¹⁷² while the corresponding Mannich conversion of (Z)-vinylsilane **696** to indolizidine **697** proceeds with copper(II) triflate in refluxing tetrahydrofuran in 73% yield. Thus, for (Z)-vinylsilane π -nucleo- philes, cyclizations of N-acyliminium ions or regular iminium ions are competitive in terms of product yields, although the conditions employed vary, with somewhat milder conditions for the N-acyliminium cyclizations. 172,559 The cyclization of **197** to polycycle **198** occurs readily in 85% yield. ²²⁸ In this case, an *N*-acyliminium ion route was selected over an iminium ion route because of the difficult cyclization, owing to the strained polycyclic ring system in the product. To form the new carbon—carbon bond, the tetrahydropyridine ring must adopt a high-energy boat conformation for appropriate orbital overlap between the reactive centers (viz. **199**). The Mannich reaction would be less suitable because of the potential for retro-Mannich fragmentation of the target molecule. In summary, the intramolecular Mannich reaction can provide a reasonable alternative to the *N*-acyliminium ion cyclization, particularly when more reactive nucleophiles are involved. *N*-Acyliminium ion cyclizations can offer advantages in terms of milder reaction conditions, decreased reaction times, good stereocontrol, and ease of reaction workup. Although intramolecular Mannich reactions are usually performed at higher temperatures, both methods can be conducted under reasonably convenient reaction conditions and frequently result in comparably respectable yields. ### 4.2. α-Acylamino Radical Cyclizations⁵⁶⁰⁻⁵⁹⁴ An α -acylamino radical cyclization can be perceived as a reaction that is parallel to the corresponding N-acyliminium ion cyclization. This single-electron process would be viable for ring closure onto receptive, radical-trapping groups, such as alkenes and alkynes, and would result in analogous products. The factors that stabilize radical species facilitate this type of reaction and enhance product yields by influencing the intermediate cyclic radicals. In standard practice, α-acylamino radicals are generated from ylthio and α -phenylseleno lactams or tertiary amides thermally with the agency of a tin hydride reagent and 2,2'-azobisisobutyronitrile (AIBN). Radical cyclizations normally favor different size rings than those that emanate from the corresponding Nacyliminium ion cyclizations. Unfortunately, such a radical cyclization can be plagued by the formation of multiple cyclic products, due to assembly of different ring sizes, and reductive byproducts. These issues will be illustrated by some pertinent examples for which comparative *N*-acyliminium ion reactions have been reported. The α -acylamino radical cyclization was introduced in 1982 by Hart as an alternative, or complement, to the *N*-acyliminium approach in alkaloid synthesis. ⁵⁶⁰ A prototypical reaction with **698** (X = SPh) produces a mixture of four compounds, **698** (X = H), AIBN = 2,2'-azobisisobutyronitrile **699a**, **699b**, and **700**, in 84% yield and a ratio of 3:10: 1:5 (eq 223). 560,561 Although pyrrolizidine **699a** predominates, it is contaminated by the other, related species. By contrast, the corresponding *N*-acyliminium reaction in eq 29 affords only indolizidine **65** in ca. 100% yield. 124,130 It is possible to guide the regiochemistry of the radical reaction toward *exo* or *endo* cyclization by positioning methyl groups on the alkene, 560,561 but mixtures of products are still commonly observed. Certain radical cyclizations fail because of reductive side reactions. For instance, *N*-allyl and *N*-(dimethylhomoallyl) derivatives **701** and **702** do not cyclize under tin hydride conditions because they are simply reduced. However, with a lengthier tether to the alkene, as in eq 224, the sevenmembered-ring and six-membered-ring products are formed to a reasonable extent. Although the corresponding allenes **703** and **704** with X = SPh fail to cyclize, ring closure is successful when phenylselenide is the leaving group.⁵⁶¹ Indeed, the reaction of allene 704 (X = SePh) gives indolizidine 705 in 60% yield (*endo/exo* = 7:1), along with 26% of reduction product **704** (X = H). ⁵⁶¹ By comparison, the cognate N-acyliminium cyclization of allene 600a in formic acid gives a complex mixture of three indolizidines, 601-603, and a 2-aza-Cope byproduct, 604 (2:1:1:2 ratio; 96% yield). A cleaner radical cyclization is realized with allene 703 (X = SePh), which cyclizes via a 5-exo-trig pathway to pyrrolizidines 706 and **707** in 52% and 14% yields. ⁵⁶¹ The corresponding *N*-acyliminium ion cyclization proceeds via a 6-endotrig pathway to give an indolizidine in excellent yield (eq 193).⁵²⁷ Pyrrolidinone **708**, bearing an allylstannane moiety, undergoes radical cyclization (450-W Hanovia lamp, Pyrex filter) to 4-vinylpyrrolizidin-1-one **125** with good stereoselectivity (endo/exo = 11:1); however, the yield is only $45\%.^{211}$ In the corresponding N-acyliminium reaction, pyrrolidinone **133** cyclizes to **125** in 72% yield with an excellent 74:1 endo/exo isomer ratio (MsCl, Et₃N, 0 to 23 °C). The N-acyliminium ion approach is clearly superior here. The regiochemistry of α -acylamino radical cyclizations can be improved by installing (1) polar heteroatom groups near the radical center of the cyclic intermediate or (2) radical-stabilizing substituents, such as heteroatom or conjugating groups (e.g., CO_2R , CN, SiR_3 , SR, Ph), at the radical center (eqs 225–227⁵⁶²). $^{562.564.565.572.573.579}$ In comparative vinylsilane $(71\%; 7\alpha/7\beta = 1:4.5)$ (12%) SiMe₃ cyclizations, the radical cyclization is better than the N-acyliminium cyclization. Pyrrolidinone **112** cyclizes via an N-acyliminium process to yield solely an indolizidine by a 6-endo-trig pathway (eq 43). In contrast, the related radical reaction of **709** (Z/E = 18:1) proceeds mainly by a 5-exo-trig pathway to give pyrrolizidine **710** in 73% yield (ca. 6:1 α/β ratio), accompanied by a minor 6-endo-trig pathway to give indolizidine **711** in 18% yield (three isomers). ⁵⁶⁴ A radical-stabilizing carbethoxy group helps to effect a sterically demanding α -acylamino radical cyclization in the synthesis of gelsemine intermediate **712** from **713**, ⁵⁶⁵ whereas the related N-acyliminium ion cyclization of **512** to **513/514** necessitates a highly reactive silyloxyalkene nucleophile. ²³⁴ α -Acylamino radicals may have an advantage over N-acyliminium ions for cyclizations of substrates with chemically labile groups. In this vein, α -acylamino radical cyclizations are useful in the synthesis of bicyclic β -lactams, 583-590 which are sensitive to nucleophiles and harsh reagents, often present in N-acyliminium ion cyclizations. For example, the radical derived from **714a** undergoes a 7-endo-trig cyclization to give **715** in 47% yield, along with 22% of reduced material **714b**. ⁵⁸³ *N*-Acyliminium ion cyclizations are feasible in the presence of β -lactams if highly reactive nucleophiles are used, as exemplified in eq 42, where the cyclization of a silyl enol ether leads to carbapenam **110**. ¹⁶⁵ Glycine-based radicals furnish monocyclic products in good yields as stereoisomeric mixtures. $^{567-570,578}$ Although glycine-cation N-acyliminium cyclizations tend to yield mixtures of stereoisomers, 161 these isomers result from the orientation of the quenching anion (e.g., formyloxy group), not the newly formed carbon—carbon bond. In eq 168, the tin(IV) chloride reaction gives a single isomer (trans) of 4-chloropipe-colic acid ester in 77% yield, whereas the corresponding radical cyclization with **716** gives a mixture of five- and six-membered-ring products, **717** (60%) and **718** (30%), the former as a 35:65 cis/trans
mixture. cis/trans Similarly, the radical cyclization of **719** affords a 93% yield of proline ester **720** as a 35:65 cis/trans mixture, whereas the corresponding N-acyliminium reaction gives only the cis-3-ethylpipecolic acid ester, with two isomers arising from the orientation of the 4-formyloxy group (eq 228). 164 NCO₂Me $$\frac{\text{HCO}_2\text{H}}{3 \text{ d}}$$ $\frac{\text{Et}}{\text{CO}_2\text{Me}}$ $\frac{\text{Et}}{\text{CO}_2\text{Me}}$ $\frac{\text{Et}}{\text{CO}_2\text{Me}}$ $\frac{\text{CO}_2\text{Me}}{\text{CO}_2\text{Me}}$ $\frac{\text{CO}_2\text{Me}}{\text{(15%)}}$ $\frac{\text{CO}_2\text{Me}}{\text{(59\%)}}$ The α -acylamino radical cyclization is useful for tandem polyene reactions. ^{572,573} The example shown in eq 229, ^{572,573} which yields a single diastereomer, is analogous to the *N*-acyliminium ion tandem process shown in eq 37 (also cf. eq 36). ¹⁴⁸ Although different ring systems (5,6,5 vs 6,6,5) are assembled, the yields and stereochemical control are comparable. A key distinction is that the radical process favors a 5-*exo*-trig pathway, whereas the cationic process favors a 6-*endo*-trig pathway, as expected. 1,5-Hydrogen atom translocation ⁵⁹⁵ initiates α -acylamino radical cyclizations with alkenes (eq 230⁵⁹¹ and reactive species **721**) and indoles (eq 231⁵⁹²). ^{591–594} It is noteworthy that this protocol can achieve a 5-*endo*trig cyclization (eq 232), ⁵⁹⁴ whereas the related *N*-acyliminium ion cyclization generally cannot, since it does not favor generation of a new five-membered ring. $$\begin{array}{c|c} & & & & \\ & & & \\ Bu_3SnH \\ \hline & & & \\ & & \\ \hline & & \\ & & \\ & & \\ Me & & \\ &$$ Alkynes are good traps for α -acylamino radicals. 563,564,567,571,575,580,581,588 Although there is not a solid basis for making direct comparisons between one-electron and two-electron processes for alkyne cyclizations, cyclization via an exo vinyl radical is strongly favored, regardless of the size of the ring being closed. However, with vinyl cations derived from N-acyliminium cyclizations, the exo/endo regiochemical preference can vary. The yields for α -acylamino radical cyclizations of internal alkynes are usually 70–90%. 563,564,567,571,575,580 A potential problem with the alkyne-based radical cyclization (besides reduction of the radical) is addition of tributyltin radical to the alkyne, 581,589 although this side reaction can be suppressed by using tricyclohexyltin hydride, as illustrated in Corey's synthesis of (+)-biotin. 581 In summary, α -acylamino radical cyclizations can work reasonably well with alkenes as radical traps and less effectively, perhaps, with alkynes as radical traps. The alkene-based radical reaction usually proceeds more efficiently when radical-stabilizing substituents are present. Different products are likely to arise from an alkene-based α -acylamino radical cyclization vis-à-vis the corresponding N-acyliminium ion cyclization. #### 5. Comprehensive Tabular Survey of Reactions The following tabular survey represents an effort to cover all of the published literature involving N-acyliminium ion cyclizations (intramolecular α -amidoalkylation reactions) through most of 2002. An emphasis has been placed on data from primary publications where there is some form of experimental support. Generally, we have discounted information from sources that lack experimental support, such as symposium lectures, unpublished results, and published results mentioned in passing (e.g., those in footnotes of papers or in review articles). Articles written in languages other the English, French, or German have not been included. No attempt has been made to address information from the patent literature or doctoral dissertations. To hold this review to a manageable length, we applied some constraints on the scope of the coverage. Hence, certain classes of specialized N-acyliminium (or N-acyliminium-type) reactions are not contained in this comprehensive survey. We have excluded (1) cyclizations resulting from formation of new carbon—heteroatom bonds; (2) β -lactam synthesis from imines and activated derivatives of carboxylic acids; (3) intermolecular [4+2] polar cycloaddition of N-acyliminium ions; (4) intramolecular electrophile-induced [4+2] cycloaddition of N-acylimines; (5) Biginelli reactions; and (6) cyclizations of vinylogous N-acyliminium ions. Some examples of N-sulfonyliminium ion cyclizations are included for the purpose of comparison. There are seven tables that are arranged as follows. Table 1 contains *bimolecular* reactions that involve a combination of "substrate" and "reactant", one bearing the electrophilic component and one bearing the nucleophilic component. This table is subdivided according to five classes of "substrates" and includes a wide range of nucleophiles. Tables 2–7 relate to *unimolecular* reactions, wherein the electrophilic and nucleophilic components are essentially present in the same reactant, and encompass the full range of nucleophiles. For the purpose of this tabular orga- nization, we are not considering reactions of substrates with simple reagents, such as metal hydrides, organolithiums, halogens, or electrons, to generate N-acyliminium ion precursors as bimolecular-type reactions. Some examples of these "processed" unimolecular reactions would be the addition of metal hydrides or organometallic nucleophiles to imides, bromination of hydantoins, or electrochemical oxidation of lactams. Table 2. on benzenoid reactions, and Table 5, on alkene reactions, are subdivided into two parts (A and B), with section A containing only direct (i.e., "unprocessed") cyclizations of *N*-acyliminium ion precursors. It is important to appreciate that certain reactions can be registered in bimolecular or unimolecular modes. For instance, reaction of 2,2-diphenylethylamine with α -angelical actone to give an intermediate N-acyliminium ion precursor, followed by acidcatalyzed cyclization, would be a "bimolecular reaction" if the intermediate is not isolated and the yield is based on the amine substrate. In contrast, this case would be a "unimolecular reaction" if the key intermediate is isolated and the yield is based on it. In the latter situation, the intermediate N-acyliminium ion precursor would be the substrate of record. Similarly, an imide that is reduced to an intermediate N-acyliminium ion precursor and immediately cyclized, with the yield based on the imide substrate, would constitute a "bimolecular reaction", whereas the corresponding "unimolecular reaction" would entail cyclization of the isolated intermediate, with the yield based on it. Percent yields are presented in parentheses. When no clear-cut percent yield was reported in the original paper, a dash ("-") is indicated. In published articles, information on yields and isomer ratios can sometimes differ between the body of the text and the experimental description. In case of a disparity, we opted to present the data contained in the Experimental Section of the paper. All temperatures are given in degrees Celsius (°C); "room temperature" is considered to be 23 °C throughout this review. In the tables, "rt" is used to indicate "room temperature" when no specific temperature was reported. The following abbreviations have been used in the tables: Ac 2,2'-azobis(isobutyronitrile) **AIBN** anhyd. anhydrous 9-BBN 9-borabicyclo[3.3.1]non-9-yl benzyl Bn **BSA** N, O-bis(trimethylsilyl)acetamide benzoyl Bz catalytic amount cat. benzyloxycarbonyl Cbz concentrated conc. 10-camphorsulfonic acid **CSA** **DBU** 1,8-diazabicyclo[5.4.0]undec-7-ene DCC N,N-dicyclohexylcarbodiimide
DCE 1.2-dichloroethane de diastereomeric excess dr diastereomeric ratio DIBAL-H diisobutylaluminum hydride **DMAP** 4-(dimethylamino)pyridine **DMD** dimethyldioxirane **DMF** N, N-dimethylformamide **DMP** 3,4-dimethoxyphenyl **DMSO** dimethyl sulfoxide **DTBMP** 2,6-di-(tert-butyl)-4-methylpyridine ee enantiomeric excess molar equivalent (mol equiv) eq ferrocenyl Fc 9-fluorenylmethoxy Fmoc menthyl Men Ms methanesulfonyl (mesyl) molecular sieves MS NIS N-iodosuccinimide phthaloyl Phth **PPA** polyphosphoric acid PPE polyphosphoric ester Py pyridine quant. quantitative rt room temperature **TBDMS** tert-butyldimethylsilyl **TBDPS** tert-butyldiphenylsilyl Tf trifluoromethanesulfonyl (triflyl) **TFA** trifluoroacetic acid **TFAA** trifluoroacetic anhydride THF tetrahydrofuran **TIPS** triisopropylsilyl **TMS** trimethylsilyl Tol *p*-tolyl Ts p-toluenesulfonyl (p-tosyl) ### 6. Acknowledgments and Dedication We thank Robin Stanzione (Exton, Pennsylvania) for her invaluable contributions to the preparation of this article and the late Robert Joyce for his dedicated assistance with the assembly of the tables. We are grateful to Prof. Scott Denmark for his excellent advice and suggestions during his review of earlier versions of this article. We express our deep appreciation to Johnson & Johnson Pharmaceutical Research & Development, LLC (formerly The R. W. Johnson Pharmaceutical Research Institute) for supporting our efforts. This chapter is dedicated to Prof. Robert O. Hutchins of Drexel University, who has illuminated the path to successful careers in chemistry for many students over the course of his academic career, and to the memory of Dr. Robert M. Joyce, deceased 19 January 2002. **Table 1. Bimolecular Reactions** | substrate | Reactions: α-Alkoxy A
reactant | conditions | product(s) and yield(s) (%) | ref | |---------------------------------------|-----------------------------------|---|------------------------------------|-----| | C ₆ | тмѕ | TiCl ₄ , CH ₂ Cl ₂ , rt | N (77) | 511 | | OMe
N OMe
CO ₂ Me | TMS | TICI ₄ , CH ₂ CI ₂ , rt | CI
N (65)
CO ₂ Me | 511 | | C ₇ ONe OMe | TMS | TiCl ₄ , CH ₂ Cl ₂ , rt | N (77) | 511 | | C ₈ | тмз | TiCl ₄ , CH ₂ Cl ₂ , rt | N (83) | 511 | | OMe | TMS | TiCl ₄ , CH ₂ Cl ₂ , rt | H (70) | 511 | | MeO N OMe | TMS | TiCl ₄ , CH ₂ Cl ₂ , rt | N CO ₂ Me (41) | 511 | | C ₉ | TMS | TiCl ₄ , CH ₂ Cl ₂ , rt | H (50) | 511 | | OMe
OMe
OMe | тмѕ | TiCl ₄ , CH ₂ Cl ₂ , rt | N (62) | 511 | | MeO N OMe | TMS | TiCl ₄ , CH ₂ Cl ₂ , rt | N CO₂Me (85) | 511 | | OMe OMe
N Pr
CO ₂ Me | TMS | TiCl ₄ , CH ₂ Cl ₂ , rt | (75)
N Pr
CO ₂ Me | 511 | | C ₁₁ OMe | R R R R H H CI H CI | 1. CH ₂ Cl ₂ or C ₆ H ₆ , rt
2. AlCl ₃ , CH ₂ Cl ₂ ,
rt, 14-36 h | R R NH NH (90) (46) | 51 | Table 1. (Continued) | Table 1 | A (Con | tinuad\ | |---------|--------|---------| | | | | | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |--|-----------|--|---|-----| | C ₁₄ ON NOEt CO ₂ Et | TMS MgCl | CeCl ₃ , HCl | (69) + | 195 | | | | | (17) | | | C ₁₉ O N OEt CO ₂ | TMCC NAMO | 1. CeCl ₃ , -78°C
2. HCl | MeO (60) , α : $\beta = 2.8:1$ | 196 | | | | | ref | |--------|---|------------------------|---------------| | PhCHO | | NH
Ph | 301 | | | PPE, 60°, 16 h
PPA, 60°, 16 h | (51)
(30) | | | PhCHO | | NH + NH | 301 | | | PPE, 30°, 18 h
TfOH, CH ₂ Cl ₂ | (30) (30)
(36) (28) | | | PhCHO | PPA or PPE, 40° | H O (0) | 300 | | PhCHO | PPE, 35°, 24 h | NH (63) | 301 | | PhCHO | PPA, 35°, 48 h | N (74) | 298 | | PhCHO | MsOH, P ₂ O ₅ ,
35°, 18 h | MsO H- (63) | 298 | | 2N CHO | PPE, 45°, 18 h | O NH (50) | 301 | | СНО | PPE, 45°, 18 h | NH (66) | 301 | | 2 | | CHO
PPE, 45°, 18 h | CHO O NH (66) | Table 1. (Continued) | reactant | conditions | product(s) and yield(s) (%) | ref | |----------------------------------|---|---|--| | 51.01.0 | | X. | | | PNCHO | | $\downarrow \downarrow$ | 301 | | | | | | | | | | | | | | Ö | | | PhCHO | PPE, 40°, 16 h | N Me (30) | 301 | | | | Ph | | | | | 0 | | | PhCHO | PPE, 60°, 18 h | NH (50) | 301 | | | | l L | | | | | Ėt | | | | | 0 0 | | | PhCHO | PPE. 35°. 24 h | NH + NH | 300 | | | - | Ph Ph | | | | | (32) (28) | | | | | 1 | | | PhCHO | | H + H | + | | | • | H | | | | | |) | | | MsOH, P ₂ O ₅ , 35°, 18 h | (32) (28) | 300
298 | | | 1171, 00 , 7211 | (10) | 200 | | | | `>~ H / | | | PhCHO | PPA, 35°, 48 h | (32) | 300 | | | | H H | | | | | OCHO
} | | | (CH ₂ O) _n | HCO ₂ H, rt, 16 h | | 164 | | | | _ | | | | | | | | PhCHO | PPA 150° 5 h | | 360 | | FIICHO | FFA, 130 , 311 | `Me | 300 | | | | Ph | | | НСНО | | | 293 | | | AcOH:TFA (4:1) or | | | | | TFA:MsOH (4:1), | | | | | HCO ₂ H, reflux, 3-8 h | (64) | | | RCHO | AcOH:TFA (4:1) or | | 293 | | | TFA:MsOH (4:1), | N CHO | | | | retlux, 3-10 h | R
R | | | | | Me (52) | | | | | Ph (48)
4-O ₂ NC ₆ H ₄ (57) | | | | | | | | | | 4-FC ₆ H ₄ (52)
4-CIC ₆ H ₄ (49) | | | | PhCHO PhCHO PhCHO PhCHO | PhCHO PPE, 40°, 19 h PPA, 40°, 49 h PhCHO PPE, 40°, 16 h PhCHO PPE, 60°, 18 h PhCHO PPE, 35°, 24 h PhCHO MsOH, P ₂ O ₅ , 35°, 18 h PPA, 35°, 72 h PhCHO PPA, 35°, 72 h PhCHO PPA, 150°, 5 h HCHO AcOH:TFA (4:1) or TFA:MsOH (4:1), reflux, 3-10 h HCO ₂ H, reflux, 3-8 h RCHO ACOH:TFA (4:1) or | PhCHO PhCHO PPE, 40°, 19 h PPA, 40°, 18 h PhCHO PPE, 40°, 18 h PhCHO PPE, 60°, 18 h PhCHO PPE, 35°, 24 h Ph Ph Ph Ph Ph Ph (32) PhCHO PPA, 35°, 72 h PhCHO PPA, 35°, 72 h PhCHO PPA, 35°, 72 h PhCHO PPA, 150°, 5 h PhCHO PPA, 150°, 5 h PhCHO AcOH:TFA (4:1) or TFA:MsOH (4:1), reflux, 3-10 h HCO ₂ H, rf, 10 | Table 1. (Continued) | Table 1B (Continued) substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |---|----------------------------------|---|--|-----| | HN_CHO | PhCH ₂ CHO | TFA:AcOH (1:4), reflux, 3 h | N _{CHO} (34) | 316 | | O
NHMe | | TFA, 100°, 6 h | Ph O (65) | 25 | | EtO ₂ C N CO ₂ Me | (CH₂O) _n | HCO₂H, rt, 24 h | OCHO (>95), α : β = 1:1 CO ₂ Me CO ₂ Et | 161 | | C ₁₀
Ph NHCHO | нсно | AcOH, TFA,
reflux,
0.5-6 h | N CHO (79) | 295 | | Ph CO ₂ Me | (CH ₂ O) _n | H ₂ SO ₄ :AcOH (1:3),
rt, 24 h | N _{CO2} Me (93) | 596 | | | НО₂ССНО | H ₂ SO ₄ :AcOH (1:3),
rt, 48 h | N CO_2Me (80) | 596 | | MeO ₂ C—NH | (CH ₂ O) _n | HCO₂H, rt, 17 h | (54)
N
CO ₂ Me | 189 | | TMS
N CO ₂ Me | (CH ₂ O) _n | HCO₂H, rt, 17 h | (58)
N
CO ₂ Me | 189 | | C ₁₁ | MeO ₂ CCHO | С _б Н _б , reflux | O N Ph (39) + HO CO ₂ Me H CO ₂ Me (46) | 215 | | H
N _{Bn} | PhCHO | PPE, 60°, 56 h | O
N Bn (95) | 301 | | Ph HN Bz | (CH ₂ O) _n | H ₂ SO ₄ :AcOH (1:3),
rt, 24 h | (88) | 596 | | Ph HN CO ₂ Et | (CH ₂ O) _n | H ₂ SO ₄ :AcOH (1:3),
rt, 24 h | N CO ₂ Et (95) | 596 | | | но₂ссно | H ₂ SO ₄ :AcOH (1:3),
rt, 48 h | N CO_2Et (84) | 596 | Table 1. (Continued) | Table 1B (Continued) substrate | reactant | conditions p | roduct(s) and yield(s) (%) | ref | |--|----------------------------------|--|--|-----| | MeO HN CHO | RCHO | A: AcOH:TFA (4:1) or
TFA:MsOH (4:1),
reflux, 3-10 h
B: HCO ₂ H, reflux, 3-8 h | MeO CHO | 293 | | | | R
H
Me
Ph
4-NO ₂ C ₆ H
4-FC ₆ H ₄
4-ClC ₆ H ₄
4-MeC ₆ H ₄ | (64) (69)
(65) (64) | | | MeO NHMe | PhCHO | TFA, reflux, 2 h | MeO O N Me (54) | 360 | | MeO O NH ₂ | RCHO | P ₂ O ₅ , H ₃ PO ₄ (85%),
AcOH, 2-3 days, rt | MeO NH R | 388 | | | R | PPA, AcOH, rt, 24 h
TFA, rt, 48 h | MeO NH NH (36) (8) | 388 | | | Me | TFA, rt, 23 h | (49) | | | TMS NH MeO ₂ C | (CH ₂ O) _n | HCO₂H, rt, 17 h | (54)
N
CO ₂ Me | 189 | | TMS
HN CO ₂ Me
CO ₂ Me | (CH ₂ O) _n | HCO ₂ H, rt, 24 h | CO_2Me (40) | 164 | | S N Me | BrCH₂COCI | CH ₂ Cl ₂ , reflux, 2 h | S (63) | 431 | | TMS H | (CH ₂ O) _n | HCO ₂ H, rt, 17 h | (51)
CO ₂ Me | 189 | | C ₁₂ Me O | (CH₂O) _n | HCO₂H, 60°, 1 4 h | Me
N O (45) | 441 | | M Bn | PhCHO | PPE, 35°, 24 h
PPA, 45°, 24 h
PPE, 60°, 24 h | H
N
(0); no rxn
(0); polymer | 300 | Table 1. (Continued) | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |----------------------|-------------------------------------|--|-----------------------------|-----| | MeO NHCHO | нсно | AcOH, TFA, reflux,
0.5-6 h | MeO NCHO (81) | 295 | | | PhCHO | AcOH, TFA, reflux,
0.5-6 h | MeO NCHO (52) | 295 | | MeO NHAc Etc | O ₂ C CO ₂ Et | TFA, toluene, 85°,
3 h | MeO NAc (96) | 615 | | MeO NHCHO | CHO
OMe | P ₂ O ₅ , H ₃ PO ₄ ,
AcOH, rt, 24 h | MeO (84) MeO CHO MeO MeO | 388 | | Ph NH | BrCH₂COCI | CH ₂ Cl ₂ , AlCl ₃ ,
reflux, 2 h | S + S N N (14) | 431 | | MeO NHMe | (CH ₂ O) _n | HCO ₂ H, 60-70°, 6 h | MeO NMe (80) | 296 | | F NHCHO | (CH ₂ O) _n | F
TFA, reflux, 4.5 h | (96) + | 294 | | Ph NHCHO | (CH ₂ O) _n | TFA, reflux, 4.5 h | NCHO (4) F Br NCHO (70) | 294 | | Ph
Ph
HN
Me | (CH ₂ O) _n | MsOH, 0°-rt, 24 h | Ph O (81) | 596 | | Ph N Bz | (CH₂O) _n | H ₂ SO ₄ :AcOH (1:3),
rt, 24 h | N Bz (88) | 596 | | Ph Ph NHCHO | (CH ₂ O) _n | TFA, reflux, 4.5 h | Ph (71) | 294 | | | НСНО | AcOH, TFA, reflux,
0.5-6 h | (74) | 295 | | OBz NHMe | (CH ₂ O) _n | MeNO ₂ , TFA,
rt, 3 days | BzO H O (76) | 518 | Table 1. (Continued) Table 1B (Continued) | Table 1B (Continued) substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |---|----------------------------------|--|---|-----| | Bn NH CO ₂ H | (CH ₂ O) _n | TFA, MeNO ₂ , rt | Bn H (85) | 475 | | MeO NHMe | (CH ₂ O) _n | HCO ₂ H, 60-70°, 6 h | MeO OCHO (78) MeO NMe | 296 | | OMe O Ac OMe O | MeCHO | AcOH, TFA, reflux,
5 h | MeO | 597 | | C ₁₆ Ph NHCHO | (CH ₂ O) _n | A: TFA/AcOH (1:4),
reflux, 4.5 h
B: TFA, reflux, 4.5 h | Ph (50)
NCHO (0) | 294 | | Ph CF ₃ | (CH ₂ O) _n | TFA, reflux, 4.5 h | CF ₃ (98) | 294 | | Ph OMe NHCHO | НСНО | AcOH, TFA, reflux,
0.5-6 h | OMe
(74) | 295 | | | (CH ₂ O) _n | TFA or TFA/AcOH (1:4) or AcOH, reflux, 4.5 h | (0) | 294 | | Ph NHCHO NO ₂ | (CH ₂ O) _n | TFA, reflux, 4.5 h | OMe
NO ₂ (70) | 294 | | MeO NH NH OMe | BrCH₂COCI | CH ₂ Cl ₂ , reflux, 2 h | MeO (77) OMe OMe | 431 | | MeO NHMe | (CH ₂ O) _n | MeNO ₂ , TFA,
rt, 3 days N | Neo HO HO (57) | 518 | | MeO HN CO ₂ Et | (CH ₂ O) _n | HCO ₂ H, 60-70°, 6 h | MeO N CO ₂ Et (84) | 296 | | C_{16-17} Ph H N CO_2R R = Me or Et | (CH ₂ O) _n | HCO ₂ H, rt, 1.5 h | OHCO \sim Ph \sim CO ₂ R \sim Me \sim (75) | 146 | | | | | Me (/5)
Et (72) | | Table 1. (Continued) | Table 4D | (Continued) | |--------------|-------------| | I able I D I | Continueu | | Table 1B (Continued) substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |---|----------------------------------|--|--|----------| | C ₁₆₋₂₁ | | | , CO₂Et | | | RO $\frac{\text{CI}}{\text{N}}$ $\frac{\text{CO}_2\text{Et}}{\text{H}}$ R = TBDMS, Me, or CH ₂ OMe | (CH ₂ O) _n | HCO ₂ H, 55°, 2 h | OME H N (41) + | 513 | | K - I BBING, NC, GI GINGONG | | | CO ₂ Et | | | | | | OCHO (20) | | | C ₁₇ OMe | | | OMe
OMe | | | Ph NHCHO | нсно | AcOH, TFA, reflux,
0.5-6 h | NCHO (83) | 295 | | MeO Ph
NHCHO | нсно | AcOH, TFA, reflux,
0.5-6 h | MeO Ph (68) | 295 | | | PhCHO | AcOH, TFA, reflux,
0.5-6 h | MeO Ph (43) | 295 | | MeO HN O OPh | OMe
OMe
OMe | POCl ₃ , CH ₂ Cl ₂ , rt,
3 h | MeO NOPh (69) | 598 | | Ph NHCO ₂ Et | (CH ₂ O) _n | HCO₂H, rt, 1.5 h | OHCO. (—) N CO ₂ Et | 146 | | C ₁₈ | | | Bn
 _ | | | HN | (CH ₂ O) _n | HCO ₂ H, 60°, 14 h | (47) | 441 | | MeO Ph O NHMe | (CH ₂ O) _n | HCO₂H, 60-70°, 6 h | MeO Ph O (74) | 296 | | MeO NHCHO | нсно | AcOH, TFA, reflux,
0.5-6 h | MeO NCHO (72) | e
295 | | Ph
NHCO ₂ Et | (CH ₂ O) _n | HCO ₂ H, 50°, 1.5 h | Ph (70)
C ₅ H ₁₁ (70) | 144 | Table 1. (Continued) | Table 1B (Continued) substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |--|----------------------------------|--|---|-----| | C ₁₉ | (CH ₂ O) _n | TFA, MeNO ₂ , rt
or
HCHO, HCO ₂ H, Th | $ \begin{array}{c c} & & & \\
& & \\ & &$ | 475 | | Tf CO ₂ Li | (CH ₂ O) _n | TFA, CH ₂ Cl ₂ | H ₂ O (-) | 475 | | MeO NHCHO | е
НСНО | AcOH, TFA, reflux,
0.5-6 h | MeO NCHO (78) | 295 | | OMe
MeO HN CO ₂ Bn | Cl₂CHCO₂H | 1. rt, 16 h
2. CH ₂ N ₂
3. H ₂ , Pd/C, MeOH | OMe CO ₂ Me MeO NH (80) OMe | 297 | | MeO OMe | | | MeO OMe | | | MeO NHMe | (CH ₂ O) _n | HCO ₂ H, 60-70°, 6 h | Meo NMe (82) | 296 | | C ₂₁ Fmoc N CO ₂ Me | (CH ₂ O) _n | HCO₂H, rt, 16 h | OCHO (84), $\alpha:\beta = 1.05:1$ N CO ₂ Me Fmoc | 164 | | TMS EtO OEt | | HCO₂H, rt, 16 h | (85)
EtO ₂ C | 190 | | C ₂₆ O O N H T _S CO ₂ H | (CH ₂ O) _n | TFA, CHCl ₃ | N H (74) | 475 | | N CO ₂ H | (CH ₂ O) _n | TFA, MeNO ₂ , rt
or
HCHO, HCO ₂ H, THF | $\begin{array}{c c} & & & \\ & & & \\$ | 475 | Table 1. (Continued) Table 1B (Continued) | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |---|----------------------------------|--|---|-----| | H ₂ N H
H CO ₂ H | (CH₂O) _n | TFA, CHCl₃ | CH ₂ H _{v₂} N H I (minor) + Ts O O CH ₂ H _{v₂} N H Ts | 475 | | OTIPS HN OBn 93% ee O | (CH₂O) _n | MsCl, Et ₃ N, CH ₂ Cl ₂ , r
TFA, toluene, rt | II (major) I + II (~55) O H N CO ₂ Bn rt (76), 86% ee (66), 66% ee | 616 | | OTIPS HN OBn 91% ee | (CH ₂ O) _n | MsCl, Et ₃ N, CH ₂ Cl ₂ , rt | O H (76), 87% ee | 616 | | C ₂₇ OTIPS HN OBn 94% ee | (CH ₂ O) _n | MsCl, Et ₃ N, CH ₂ Cl ₂ ,
rt | O H (67), 93% ee | 616 | | MeO HN O Me | Me Ph OM | POCI ₃ , CH ₂ CI ₂ rt OMe | MeO Me Me Me Me Me Me Me Me O Me | 598 | | C_{28} $R = CO_2Li$ $R = CH_2$ CH_2 | (CH ₂ O |) _n TFA, CHCI ₃ | H ₂ N (85) | 475 | Table 1C. Bimolecular Reactions: Imines | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |--------------------|----------|----------------------|-----------------------------|-----| | C ₇ NMe | 0 | xylene, reflux, 24 h | O N (55) | 246 | | NMe | | xylene, 137°, 40 min | CO ₂ H (85) | 249 | Table 1. (Continued) Table 1C (Continued) | Table 1C (Continued) substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|--------------|---|-----------------------------------|-----| | C ₈ | | | 01 | | | CI. | ~ ~ <i>°</i> | | CO ₂ H | 265 | | Y 1 | | | + | | | NMe | 0 | | N Me I | | | | 0 | | O | | | | | | CO₂H CI | | | | | | | | | | | | N _M | | | | | | Me II | | | | | | <u> </u> | | | | | CHCl ₃ , rt, overnight | (33) (0) | | | | | MeOH, 40°, 2 mln | (0) (24) | | | | | | ÇO ₂ Me | | | | Ph | | Ph | | | | | CHCl ₃ , reflux, 1 h | N 0 (39) + | 265 | | | 0, 0, 0 | | CI Me | | | | | | CO₂Me | | | | | | Ph. J | | | | | | N (4) | | | | | | Me | | | | | | Ci - | | | O-N o | 0 | | CO ₂ H NO ₂ | | | O ₂ N | | CHCl ₃ , rt, overnight | (87) | 265 | | NMe | | <i>3,</i> , 3 | N NAC | | | | 0 | | O Me | | | | | | CO₂H | | | Ph NMe | | xylene, reflux, | Ph (55) ^a | 247 | | 111 | 0000 | 24 h | N Me | 248 | | | | | O Me | | | | ,Ph | | CO₂H | | | | | CHCl ₃ , rt, 18 h | (50) | 265 | | | 0000 | | $\lambda > \lambda$ | | | | | | Ph N O
H
Me | | | | | | HO ₂ C _\ | | | | | C ₆ H ₆ , reflux, | | | | | 0000 | 36 h | Ph ^{Jrd} N | 244 | | | | | Me | | | | | | (83), α : β = 1:3.2 | | | C ₉ | | | ÇO ₂ H O | | | 0 🐟 | |) | | | | NMe | | | | 257 | | O | | | Me | | | | 0 0 | | └─O O
β:α | | | | | MeCN, 82°, 1 h | 67:33 | | | | | MeCN:Et ₃ N (9:1), rt, 4 | 0 min 58:42 | | | | | MeNO ₂ , rt, 30 min | 38:62 | | | | | t-BuOH, rt, 27 min
THF, rt, 65 min | 23:77
20:80 | | | | | neat, rt, 1 min | 20:80 | | | | | MeCN, -22°, 57 min | 20:80 | | | | | CH ₂ Cl ₂ , rt, 15 min | 17:83 | | | | | CH ₂ Cl ₂ , -78°, 72 min
DCE, 83°, 103 min | 11:89
11:89 | | | | | PhCH ₂ CN, 183°, 59 m | | | | | | | | | Table 1. (Continued) ## Table 1C (Continued) | Table 1C (Continued) | | | | | |----------------------|---|--|-----------------------------|-----| | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | | | | | ÇO ₂ H O | | | | | | | | | | | | - C | 259 | | oʻ | Y Y . | | Ų ↓ N. | 260 | | \ | -0 0 | | O Me | 262 | | | | | _0 | | | | | | α β | | | | | C ₆ H ₆ , rt | (85) (0) | | | | | MeOH, rt, 1 h | (66) (29) | | | | | MeOH, 23°, 1 h | (55) (45) | | | | | MeOH, 65°, 1 h | (57) (43) | | | | | MeCN, 82°, 1 h | (58) (42) | | | | | TFA, 23°, 1 h | (60) (40) | | | | | MeCN, 23°, 1 h | (60) (40) | | | | | neat, 23°, 1 min
| (60) (40) | | | | | DMF, 23°, 1 h | (61) (39) | | | | | MeOH, -65°, 1 h | (62) (38) | | | | | | | | | | | DMSO, 23°, 1 h | (68) (32) | | | | | AcOH, 118°, 1 h | (75) (25) | | | | | CHCl ₃ , 23°, 1 h | (77) (23) | | | | | CHCl ₃ , 61°, 1 h | (80) (20) | | | | | xylene, 23°, 1 h | (90) (10) | | | | | C ₆ H ₆ , 23°, 1 h | (92) (8) | | | | Dh | | CO ₂ Me | | | NE | Ph | | Ph 1 | | | PhNEt | | CHCl ₃ , reflux, 5 h | (36) | 265 | | | 0 0 0 | | PhNO | | | | | | Ėt | | | | | | | | | | ,Ph | | CO₂H CO₂H | | | | $\overline{}$ | CHCl ₃ , reflux, 2 h | | | | TolNMe | | Crici3, reliax, 2 fr | Tol NO Tol NO | 265 | | | 0 0 0 | | | | | | | | Me Me | | | | | | (27) (20) | | | | | | ÇO₂H | | | | | | Tol | 265 | | | | | | | | | , II | | N Me | | | | 0 | | 0 | | | | | | | | | | | CHCI # 1 h | | | | | | CHCl ₃ , rt, 1 h | | | | | | MeOH, 40°, 2 min | (0) (12) | | | DI | | | | | | $Ph \searrow N$ | RCI | Method A | | 363 | | | | 1. DCE, rt, 0.5 h | N _R | | | (formed in situ) | | AICI₃, DCE, | | | | (| <u>R</u> | reflux, 3 h | Method A Method B Method C | | | | Cl ₂ CHCO | Method B | (75) (75) (73) | | | | CICH ₂ CO | | (45) (72) (70) | | | | Ac | DCE, KI, rt, 2 h | (25) (50) (46) | | | | Bz | Mothod C | (36) (75) (70) | | | | PhOCH₂CO | Method C | (40) (—) (70) | | | | 2,4-Cl ₂ C ₆ H ₃ OCH ₂ CO | 1. No substrate, | (45) (—) (56) | | | | MeOCH ₂ CO | DCE, rt, 1 h | (58) (—) (77) | | | | PhSO ₂ | Add substrate, | (56) (56) (—) | | | | F11302 | rt, 4 h | (30) (30) (—) | | | | | | CO ₂ H | | | MeO | Ph | | Ph 1 | | | NMe | | CHCl ₃ , reflux, 1 h | (27) + | 265 | | Nivie | 0/0/0 | | N O | | | | | | MeO | | | | | | MeO | | | | | | CO₂H
Ph、 | | | | | | · ··· / _ | | | | | | N 0 (9) | | | | | | Me (9) | | | | | | MeO Me | | | | | | | | Table 1. (Continued) Table 1C (Continued) | Table 1C (Continued) substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|----------|--|---|-----| | | | | CO ₂ H OMe | 265 | | | | CHCl ₃ , rt, 1 h
MeOH, 40°, 2 min | $ \frac{\alpha}{(55)} $ $ \frac{\beta}{(0)} $ $ \frac{\alpha}{(26)} $ | | | NMe | | CHCl ₃ , rt, 10 min | O O O O O O O O O O | 249 | | 0 | MeO MeO | 1. CHCl ₃ , rt, 26 min
2. AcOH, reflux, 24 | h HO ₂ C OMe | 276 | | | MeO OMe | CHCl ₃ , rt, 0.5 h | 0
H
N
N
(>90)
HO ₂ C | 249 | | CI N /Pr | | 1. BF ₃ •Et ₂ O, 8-14 h
2. THF, MeCN, rt | $HO_2 \stackrel{i}{C}_{Cl} \qquad (41)$ | 273 | | Ph ✓N _{j-Pr} | | | O
N
i-Pr
Ph
CO ₂ H | | | | | A : 1. BF ₃ •Et ₂ O, 8-1
2. THF, MeCN, r | | 273 | | | | B: CHCl ₃ , rt, overni | | 265 | | | Ph | CHCl ₃ , reflux,
1 h | Ph CO ₂ Me Ph CO ₂ Me Ph N O Ph N O (36) (3) | 265 | | Me ₂ N NMe | Ph | CHCl ₃ , reflux,
40 min | $\begin{array}{c} CO_2H \\ N \\ Me_2N \end{array} \qquad (13)$ | 265 | | | | CHCl ₃ , rt, 1 h | HO ₂ C NMe ₂ (52) | 265 | Table 1. (Continued) | Table 1C (Continued substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |-------------------------------|--|--|---|-----| | CN ON NMe | | MeCN, rt, 1.5 h | CN CO_2H Me $(94), \alpha:\beta = 1:2$ MeO | 263 | | MeO | MeO O | CHCl ₃ , rt, 0.5 h | MeO HO_2C^{ω} OMe (90) , $\alpha:\beta=3:1$ OMe | 253 | | | R 0 | CHCl ₃ , rt, 2.5 h | MeO (78) MeO (78) | 276 | | | R H MeO | 1. DCE, Et ₃ N, rt,
18 h
2. GH ₂ N ₂ , Et ₂ O | MeO ₂ C (48) (43) CO ₂ H Ph | 250 | | Ph N _{t-Bu} | | CHCl ₃ , reflux, 1 h
CHCl ₃ , rt, 48 h | Ph Ph N O Ph N O (18) (0) (23) | 265 | | MeO N | RCI | | MeO National R. Matteral C. | 363 | | (formed in situ) | R Cl ₂ CHCO CICH ₂ CO Ac Bz PhOCH ₂ CO 2,4-Cl ₂ C ₆ H ₃ OCH ₂ CO MeOCH ₂ CO MeOCO Cl ₃ CCO CF ₃ CO PhSO ₂ Me ₂ NCO (EtO) ₂ PO | Method A 1. DCE, rt, 0.5 h 2. AlCl ₃ , DCE, reflux, 3 h Method B DCE, KI, rt, 2 h Method C 1. No substrate, DCE, rt, 1 h 2. Add substrate, rt, 4 h | Method A Method B Method C (65) (80) (76) (55) (80) (76) (52) (74) (71) (70) (87) (86) (75) (—) (76) (60) (—) (69) (60) (—) (82) (80) (—) (77) (70) (—) (66) (—) (70) (—) (51) (69) (—) (52) (73) (—) (50) (69) (—) | | | NPh | | xylene, 137°,
0.5 h | HO ₂ C
N Ph (91) | 249 | Table 1. (Continued) | Table 1C (Continued) substrate | reactant | conditions pro | oduct(s) and yield(s) (%) | ref | |------------------------------------|---------------------------------------|--|--|-----| | i-PrO NMe | O O O O O O O O O O O O O O O O O O O | CHCl ₃ , rt, MeC
0.5 h MeC |) N OMe | 264 | | C ₁₃ | OMe | | (100), α:β = 35:65 | | | CI NPh | | 1. BF ₃ •Et ₂ O, 8-14 h
2. THF, MeCN, rt | O Ph
HO ₂ C Cl (56) | 273 | | PhNPh | | | O
N
Ph
CO ₂ H | | | | | A : 1. BF ₃ •Et ₂ O, 8-14 h
2. THF, MeCN, rt | (47) | 273 | | | | B: DCE, reflux, 15 min | (40)
HO₂C∖ | 265 | | | 000 | C ₆ H ₆ , reflux, 36 h | Ph (72) | 244 | | C ₁₄ CI N Bn | | 1. BF _{3*} Et ₂ O,
8-14 h
2. THF, MeCN, rt | N Bn (56) | 273 | | CI N | OMe O | 1. BF _{3*} Et ₂ O,
8-14 h
2. THF, MeCN, rt | O OMe (57) HO ₂ C CI CI | 273 | | CI OMe | | 1. BF ₃ •Et ₂ O,
8-14 h
2. THF, MeCN, rt | MeO
O
N
N
(96) | 273 | | NMe | | CHCl ₃ , 23°, 10 min | HO ₂ C (90) | 249 | | Ph Ph
NMe | | xylene, 137°, 0.5 h | CO ₂ H Ph Ph (50) Me | 249 | | MeO C ₅ H ₁₁ | | xylene, reflux, 24 h | CO ₂ H C ₅ H ₁₁ (48) ^a (48) ^a | 248 | Table 1. (Continued) | ninium Ions | | | Chemical Reviews | 2004, | |-----------------------------|-----------|---|-----------------------------|-------| | ed)
Table 1C (Continued) | | | | | | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | | C ₁₅ | PhCOCI | | NO ₂ | 363 | | | | A: DCE, KI, rt, 2 h B: 1. DCE, rt, 0.5 h 2. AICI ₃ , DCE, reflux, 3 h C: 1. No substrate, DCE, rt, 1 h 2. Add substrate, rt, 4 h | (72)
(75)
(67) | | | Ph Ph | CICH₂COCI | | N CI | 363 | | | | A : DCE, KI, rt, 2 h
B : 1. DCE, rt, 0.5 h
2. AICl ₃ , DCE, | (65)
(70) | | | | | reflux, 3 h C: 1. No substrate, DCE, rt, 1 h 2. Add substrate, rt, 4 h | (62) | | | C ₁₅₋₁₈ | | | | | | N O R | 0 0 | CH ₂ Cl ₂ , rt, 24 h | N H O CO | ₂H | C₁₇ C₁₉ Table 1. (Continued) Table 1C (Continued) | Table 1C (Continued) | | | | | |---|---|--|--|-----| | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | | C ₂₂₋₂₃ | | C ₆ H ₆ , reflux,
84 h | CO ₂ H | 266 | | | | 1. C ₆ H ₆ or DCE,
reflux, 10 min
2. rt, 1 h | CO ₂ H (92) | 250 | | SMe N—Ac | | 1. BF ₃ •Et ₂ O,
8-14 h
2. THF, MeCN, rt | Ac
N
(64)
CO ₂ H SMe | 273 | | N N N N N N N N N N N N N N N N N N N | b
Fmoc-L-R'Cl | Py, CH₂Cl₂ 20% piperidine,
CH₂Cl₂ | H NH R' | 544 | | R Cyclohexyl $Me_2C=CH$ $PhCH=CH$ Ph $4-MeOC_6H_4$ $4-MeOC_6H_4$ $4-NO_2C_6H_4$ $4-NO_2C_6H_4$ | R'
Bn
#Bu
#Bu
Bn
#Bu
H
Bn
#Bu | | H cis:trans (39) 40:60 (36) 64:36 (54) 59:41 (85) 58:42 (72) 57:43 (64) 57:43 (57) 49:51 (74) 50:50 (73) 50:50 (88) 55:45 | | | R Me ₂ C=CH Me ₂ CHCH ₂ cyclohexyl PhCH=CH Ph 4-MeOC ₆ H ₄ | Fmoc-L-ProCl, | 1. Py, CH ₂ Cl ₂ 2. 20% piperidine, CH ₂ Cl ₂ | (49) 53:47
(61) 24:76
(73) 14:86
(61) 59:41
(76) 46:54
(75) 56:44 | 544 | | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |---|--------------------------|---|---|-----| | N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | OCOCI
NO ₂ | 1. Py, CH ₂ Cl ₂ , DMAP
rt, 18 h | O R'
N O | 618 | | R | | | R' | | | Ph | | 2. PhCH ₂ NH ₂ | (31) Bn | | | Ph | | 2. c-C ₆ H ₁₁ CH ₂ NH ₂ | (38) $c-C_6H_{11}CH_2$ | | | Ph | | 2. Me ₂ CHCH ₂ NH ₂ | (32) Me ₂ CHCH ₂ | | | 3,4,5-(MeO) ₃ C ₆ H ₂ | | 2. PhCH ₂ NH ₂ | (20) Bn | | | 3,4,5-(MeO) ₃ C ₆ H ₂ | | 2. c-C ₆ H ₁₁ CH ₂ NH ₂ | (33) $c-C_6H_{11}CH_2$ | | | $3,4,5-(MeO)_3C_6H_2$ | | 2. Me ₂ CHCH ₂ NH ₂ | (44) Me ₂ CHCH ₂ | | | 4-NO ₂ C ₆ H ₄ | | 2. PhCH ₂ NH ₂ | (15) Bn | | | 4-NO ₂ C ₆ H ₄ | | 2. c-C ₆ H ₁₁ CH ₂ NH ₂ | (35) c-C ₆ H ₁₁ CH ₂ | | | 4-NO ₂ C ₆ H
₄ | | 2. Me ₂ CHCH ₂ NH ₂ | (30) Me ₂ CHCH ₂ | | | Me ₂ CHCH ₂ | | 2. PhCH ₂ NH ₂ | (17) Bn | | | Me ₂ CHCH ₂ | | 2. c-C ₆ H ₁₁ CH ₂ NH ₂ | (22) c-C ₆ H ₁₁ CH ₂ | | | Me ₂ CHCH ₂ | | 2. Me ₂ CHCH ₂ NH ₂ | (20) Me ₂ CHCH ₂ | | | Me ₂ CHCH ₂ | | 2. Me ₂ CHCH ₂ NH ₂ | (20) Me ₂ CHCH ₂ | | |---|-------------------------------------|--|--|------------| | Table 1D. Bimolecula | | aanditiona | product(s) and yield(s) (%) | | | Substrate C ₆ NH ₂ | CO ₂ H CHO | TsOH, benzene reflux | N (76) | ref
619 | | | MeO CHO | TsOH, benzene
reflux | OMe | 619 | | _ | CO ₂ H Ac | TsOH, benzene
reflux | O (79) | 619 | | C ₇ | CO ₂ H
CHO | TsOH, benzene
reflux | (76) | 619 | | | CO ₂ H
MeO CHO
MeO | TsOH, benzene
reflux | N N (66)
OMe | 619 | | C ₉ MeO NI | H ₂ CO ₂ Et | 1. Toluene, reflux,
8 h
2. 57% HI, rt, 30 min | MeO N (-) | 77 | | HO N | H ₂ O CO ₂ Et | EtOH | MeO NO | 62 | (—), α : β = 1:2.1 Table 1. (Continued) | Table 1D (Continued) substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|---------------------------------------|--|---------------------------------------|-----| | Ph NH ₂ | | 1. NaBH ₄ , MsOH,
EtOH, -5 to 0°
2. PPA, 100°, 8 h | (50), α:β = 72:28 | 45 | | | | PPA, 100°, 8 h | (80), α : β = 70:30 | 45 | | NH ₂ | HO ₂ C | xylene, reflux,
7.5 h | CI (77)° | 31: | | | HO_2C R R | | CI N R | 312 | | | Me
Ph | xylene, reflux, 70 h
p-cymene, reflux, 72 | (41)°
? h (40)° | | | NH ₂ | СНО | 1. 4 Å MS, rt,
overnight
2. CICO ₂ CH ₂ CCI ₃ ,
Et ₃ N, 0-25°,
3-5 h | O CCI ₃ (56) | 47 | | | | 4 Å MS, rt,
overnight CICO₂Me, Py,
0-25°, 3-5 h | NCO ₂ Me (68) | 47 | | | HO ₂ C | xylene, reflux, 4 h | (70)° | 31 | | | ON OEt | AcOH | N (67) | 46 | | | PhCHO | 1. 4 Å MS, rt,
overnight
2. CICO ₂ CH ₂ CCI ₃ ,
Py, 0-25°, 3-5 h | O
N
Ph
CCI ₃ (67) | 47 | | | R R R H 4-NO ₂ | EtO ₂ CCI, CH ₂ CI ₂ ,
PhNMe ₂ , rt, 1 h | N-CO ₂ Et N H (78) (83) | 34 | | | MeO ₂ C CO ₂ Me | MeOH, reflux, 20 h | N CO ₂ Me (92)° | 62 | Table 1. (Continued) Table 1D (Continued) | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |-----------|------------------------------------|---|--|----------| | | O N OEt | HOAc | 0
N
H (81) | 467 | | | R CHO R H Br | AcCI, CH ₂ CI ₂ ,
PhNMe ₂ , rt, 1 h | N-Ac
N H R
(80)
(65) | 340 | | | CI
F
4-NO ₂
Me | | (85)
(50)
(95)
(75) | | | | CHO
CO₂H | H_2SO_4 (2 N), EtOH, H_2O , reflux, 40 h | (35) ^c | 457 | | | OHC CO ₂ Me | —
(probably: PhMe, rt,
2 h; AcOH, rt, 7 days) | $N H S^{O} - CO_{2}Me$ $(-)^{\circ}, \alpha:\beta > 100:1$ | 453 | | | CHO CO ₂ Me | AcOH, reflux, 12 h | (88)° H Et | 93
94 | | | CO ₂ H | xylene, reflux, 6 h | (63)° | 312 | | | Ph | RCOCI, CH ₂ CI ₂ ,
PhNMe ₂ , rt, 1 h | N Ph | 340 | | | | Me
OEt | (80)
(85) | | | | Ph | MeCOCI, CH ₂ CI ₂ ,
PhNMe ₂ , rt, 1 h | N—Ac (35) | 340 | | | MeO CHO | MeCOCI, CH ₂ CI ₂ ,
PhNMe ₂ , rt, 1 h | N—Ac (15) N—OMe OMe | 340 | | | CO ₂ H | AcOH, reflux, 2 h | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 452 | | | HO ₂ O O | AcOH, reflux, 3 h | N H Et $(74)^c$, $\alpha:\beta=1:1$ | 97 | | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |-----------|---|---|--|--------------| | | OH O CHO | AcOH, reflux | OH
N H Et
$(47)^c$, α : β = 1:1 | 98 | | | CO ₂ Et | 1. AcOH, reflux, 2 h 2. HCI/EtOH, rt, 24 h 3. H ₂ SO ₄ , reflux, 10 min | O (35)° | 462 | | | HO₂C Ph | butyl cellosolve, 20 h | N Ph (46)° | 312 | | | CHO CO ₂ H OMe | $ m H_2SO_4$ (2 N), EtOH, $ m H_2O$, reflux, 40 h | OMe (43)° | 457 | | | MeO CHO MeO CO ₂ H | $ m H_2SO_4$ (2 N), EtOH, $ m H_2O$, reflux, 40 h | N (40)°
N H OMe | 457 | | | OHC CO₂Me
Et CO₂Me | | H N CO ₂ Me | | | | | —
1. Hot toluene; rt, 2 h
2. AcOH, rt, 7 days | (—)°, α:β = 85:15 (76)°, α isomer | 453a
453b | | | OHC CO ₂ Me | 1. Toluene, rt, 2 h
2. AcOH, rt, 7 days | H N (50)° CO ₂ Me | 599 | | | Et OH | AcOH, reflux, 18 h | $ \begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & & &$ | 54
99 | | | CO ₂ H Et | 1. AcOH, reflux, 6 days
2. NaOH/MeOH | N H Et HO (84)°, α:β = 1:1 | 54
99 | | | OMe
MeO CHO
MeO CO ₂ H | H ₂ SO ₄ , EtOH, H ₂ O, reflux, 40 h | N (25)
N (25)
MeO OMe | 457 | | | CHO CO ₂ Me | - | 0
N
H
Et (75) ^c | 454 | Table 1. (Continued) Table 1D (Continued) | Table 1D (Contingual Substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|--|---|---|-----| | | OMe
OMe
CO ₂ Me | 1. AcOH, reflux
2. BF ₃ *OEt ₂ or
H ₂ SO ₄ , 100° | O
N
Et (—) ^c | 54 | | | Et CHO MeO ₂ C CO ₂ Me | _ | $RO_{2}C$ $R = Me (53)^{c}$ $R = H (37)^{c}$ | 92 | | | CO ₂ Et OEt CO ₂ Et | AcOH, H₂O,
reflux | N CO ₂ Et (-)° | 96 | | | CO ₂ Me
EtO N | AcOH, H₂O | N—N H (<5)° | 472 | | Et | O CO ₂ Me OEt Et CO ₂ Et | AcOH, H ₂ O,
reflux, 6 h | N H Et CO ₂ Me | 96 | | f | EtO CO ₂ Me CO ₂ Et | AcOH, H₂O,
reflux | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ N & & \\ N & & \\ H & & \\ & &
\\ & & \\ & &$ | 96 | | | EtO_OEt | AcOH, H ₂ O,
reflux, 2-3 h | N | 621 | | | R
Me
Ph
C ₆ H ₁₁
4-pyridyl
Bn | | (59)° (81)° (77)° (68)° (71)° | | | H ₂ N
N
H | EtO OEt N CO ₂ Et Bz | AcOH, H ₂ O,
reflux, 3 h | Bz
N
O
(73)° | 476 | | MeO MeO | NH ₂ CO ₂ H | EtOH | MeO N=0 (), α : β = 3.2:1 | 62 | | | O
CO₂E | 1. Toluene, reflux
t 8 h
2. 57% HI, rt, 0.5 | MeO (85) | 77 | | substrate | d)
reactant | conditions | product(s) and yield(s) (%) | ref | |--|--|--|---|------------------------| | | | CONTRICTIO | OMe | 101 | | MeO NH | CO ₂ Et | 1. Toluene, reflux,
8 h
2. 57% HI, rt, 0.5 h | MeO N (67) | 77 | | C ₁₁ NH ₂ CO ₂ H | RO_2C RO_2F RO_2F | TFA, C ₆ H ₆ , dioxane,
reflux
R | N R H (58) | 456 | | N
N
H | Me H ₂ R R Ph Me | HCI, EtOH, rt, 20 h | CO ₂ Me (55)
N R
H
(41)
(33) | 463 | | MeO N H | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | xylene, reflux, 22 h p-cymene, reflux, 22 h | MeO N R R (61)° (50)° | 312 | | | HO ₂ C | p-cymene, reflux, 4 h | MeO N O N O N O N O N O N O N O N O N O N | 312 | | | Ph | HCl, EtOH, rt,
20 h | MeO (-) | 463 | | OMe
R ¹ NH ₂ | CO ₂ Et | 1. Toluene, reflux, 8 h | OMe
R ² N O | | | R1 R2 R3 OMe H OMe H OMe OMe OMe OMe H | | 2. 57% HI, rt, 0.5 h
2. PPA, 80°, 8 h
2. 57% HI, rt, 0.5 h | (57)
(51)
(80) | 77
75, 77
76, 77 | | NH ₂ | CO₂H
CHO | TsOH, benzene,
reflux | (82) | 619 | | NH ₂ | HO₂C O | TsOH, reflux, 48 h | (3) + | 622 | | | | | OH
N O
N (55) | | Table 1. (Continued) | Table 1D (Continued) substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |--|--|---|---|------------------| | C ₁₂ CO ₂ Me NH ₂ | онс | 1. CH ₂ Cl ₂ , 4 Å MS,
rt, 12 h
2. N-CO ₂ Bn | MeO ₂ C | 474 | | | онс | 1. CH ₂ Cl ₂ , 4 Å MS,
rt, 12 h
2. N-CO ₂ Bn | MeO ₂ C | 474 | | EtO ₂ C NH ₂ | O O CO ₂ Et | C₆H₆, reflux, 10 h H₃PO₄ (85%), MeOH, reflux, 20 h | H EtO ₂ C N N O N O O O O O O O O O O O O O O O | 71 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | CO ₂ Me | TFA, C_6H_6 , dioxane, reflux | R^1 R^2 R^3 R^3 R^3 R^3 R^3 R^3 | 456 | | OMe H H
H OMe H
OMe H OMe | | | (60)
(80)
(65) | | | C ₁₄ | | | Ph | | | Ph NH ₂ | HO ₂ C | PPA, 100°, 20 h | (35), α : β = 94:6 | 45
67 | | | | PPA, 100°, 4 h | Ph (65), α : β = 94:6 | 4 5
67 | | | 000 | 1. NaBH ₄ , MsOH,
EtOH, -5 to 0°
2. PPA, 100°, 6 h | Ph
N
N
O
(60), α:β = 93:7 | 4 5
67 | | | HO ₂ C O | PPA, 100°, 20 h | Ph
N
O | 45
67 | | | $\bigcap_{n \in \mathcal{N}} CO_2Me$ $\frac{n}{1}$ 2 | PPA, 100°, 24 h | (74), $\alpha:\beta = 96:4$ Ph N O (60), $\alpha:\beta = 95:5$ (50), $\alpha:\beta \ge 95:5$ | 45 | | | reactant | conditions | product(s) and yield(s) (%) | ref | |------------------------------------|---------------------|---|--|-----------| | R | H ₂ 0 | 1. NaBH ₄ , MsOH,
EtOH, -5 to 0°
2. PPA, 100°, 6 h | R R N O R (55), $\alpha:\beta = 93.7$ Cl (50), $\alpha:\beta = 93.7$ | 45
115 | | C ₁₅ Ph NH ₂ | | PPA, 100°, 4 h | Ph | 45 | | | | 1. NaBH ₄ , MsOH,
EtOH, -5 to 0°
2. PPA, 100°, 6 h | (65), α:β = 60:40 Ph ₂₋₂₋₂ -3-4 N O (55), α:β = 55:45 | 45 | | C ₁₆ NH ₂ Ph | HO₂C O | A: xylene, reflux, 12 h B: DCC, DMAP, THF, rt, 12 h | HN N O (61) (71) | 382 | | | HO₂C ↓ O | A: xylene, reflux, 12 h B: DCC, DMAP, THF, rt, 12 h | HN N O (45) (64) | 382 | | | HO ₂ C , | A: xylene, reflux, 12 h B: DCC, DMAP, THF, rt, 12 h | HN (23) (58) | 382 | | | HO₂C Ph | | Ph Ph | 382 | | | | A: xylene, reflux, 12 h B: DCC, DMAP, THF, rt, 12 h | (16)
(26) | | Table 1. (Continued) Table 1D (Continued) | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |---|--------------------|---|--|------------------| | | CO ₂ Me | HCI, EtOH, reflux,
10 min | MeO Ph | 45 | | H ₂ N | 0500 | 1. NaBH ₄ , MsOH,
EtOH, -5 to 0°
2. PPA, 100°, 6 h | (80), α:β ≥ 95:5 H-N (45), α:β = 95:5 | 45 | | C ₁₈ OMe OMe OMe MeO NH ₂ | 040 | 1. NaBH ₄ , MsOH,
EtOH, -5 to 0°
2. HCl, EtOH,
reflux, 30 min | MeO $\frac{1}{H}$ O $\frac{1}{H}$ O $\frac{1}{H}$ $\frac{1}{H$ | 4 5
67 | Table 1E. Bimolecular Reactions: Sulfonamides and Related Derivatives | | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |----------------|-----------|----------|--|-----------------------------------|-----| | C ₇ | TsNSO | СНО | BF ₃ •Et ₂ O, 0°,
CH ₂ Cl ₂ | NHTs + NHTs (38) (12) | 519 | | | | СНО | BF ₃ •Et ₂ O, C ₆ H ₆ ,
0° | (38) (12) TsHN + NHTs (40) (39) | 519 | | | | сно | | F H NHTs + NHTs | 519 | | | | | BF_3 • Et_2O (1 eq) BF_3 • Et_2O (0.2 eq) | (50-60)
(25) (25) | | | | | | FeCl ₃ , CH ₂ Cl ₂ | CI H NHTs (50) | 519 | | | | TMS CHO | | R | 176 | | | | R
Br | DE *E* O | (0) | | | | | Ph | BF ₃ •Et ₂ O
BF ₃ •Et ₂ O | (0) | | | | | H | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , | | | | | | Н | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , | | | | | | н | BF ₃ •Et ₂ O, C ₆ H ₆ , 5° | | | | | | Н | BF ₃ •Et ₂ O, toluene,
-15° | (50) | | | | | Н | SnCl ₄ , CH ₂ Cl ₂ , 0° | (55) | | | | | Н | SnCl ₄ , CH ₂ Cl ₂ ,
-78° to rt | (47) | | Table 1. (Continued) Table 1E (Continued) | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |-------------------|-------------------------------------|--|---------------------------------|-----| | | СНО | BF ₃
*Et ₂ O (0.5 eq),
CH ₂ Cl ₂ , 0° | NHTs (52), $\alpha:\beta = 1:3$ | 519 | | | TMS OMe OMe OHC OMe | 1. DCE, 80°, 24 h
2. BF ₃ •OEt ₂ , 0°-rt | OMe
OMe
OMe
NHTs | 176 | | TsNH ₂ | TMS OMe OMe OHC OMe | BF ₃ •OEt ₂ , –78° to rt | OMe
OMe
OMe
NHTs | 176 | | | CHO
Me ₂ PhSi | BF ₃ *Et ₂ O, CH ₂ Cl ₂ ,
-78 to -35° | (80)
NHTs | 306 | | | CHO
Me ₂ PhSi | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
–78 to –35° | (85)
NHTs | 306 | | | i-Pr CHO | BF ₃ *Et ₂ O, CH ₂ Cl ₂ ,
-78 to -35° | i-Pr (82) | 306 | | | i-Pr
CHO
Me ₂ PhSi | BF ₃ *Et ₂ O, CH ₂ Cl ₂ ,
–78 to –35° | i-Pr (82) | 306 | | | NHTs
CHO
Me ₂ PhSi | BF ₃ *Et ₂ O, CH ₂ Cl ₂ ,
-78 to -35° | NHTs (80) | 300 | | TsNHMe | TMS OMe
OHC OMe | BF ₃ •Et ₂ O, –78°
to rt | OMe
OMe
OMe
NMeTs | 176 | | MeO H | Ms OEt | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO (95) MeO Ms | 623 | | | MeO OMe | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO N Ms (83) | 623 | | | (/)-Men O CHO | BF ₃ *Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO (89) MeO (N Ms | 623 | | | PhCHO | BF ₃ *Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO N Ms | 623 | Table 1. (Continued) Table 1E (Continued) | MeO HN Ms | Ph CHO Br OEt OEt MeO OMe | BF ₃ *Et ₂ O, CH ₂ Cl ₂ , rt, 1 h BF ₃ *Et ₂ O, CH ₂ Cl ₂ , rt, 1 h BF ₃ *Et ₂ O, CH ₂ Cl ₂ , rt, 1 h | MeO N Ms Ph (90) MeO N Ms (90) CI CI | | |--------------|------------------------------|---|--|-----| | MeO CI HN Ms | MeO OMe | rt, 1 h BF _{3*} Et ₂ O, CH ₂ Cl ₂ , rt, 1 h BF _{3*} Et ₂ O, CH ₂ Cl ₂ , | MeO OMe Br (90) MeO N Ms (88) OMe (88) | 62 | | | 0 (40 | rt, 1 h
BF ₃ •Et ₂ O, CH ₂ Cl ₂ , | MeO N Ms (88) | 62 | | | (/)-Men O CHO | | CI | | | | | rt, 1 h | MeO N Ms (81) | 62 | | | PhCHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO N Ms (58) | 623 | | | Ph | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO N Ms Ph | 62: | | MeO HN Ms | OEt OEt | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO N Ms (87) + | 62 | | | | | MeO (5) MeO Br | | | | МөО ОМө | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | | 623 | | | | | MeO N Ms | | | | (/)-Men CHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO | 623 | | | | | MeO N Ms (10) | | Table 1. (Continued) Table 1E (Continued) | Table 1E (Continued substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |-------------------------------|---------------|--|-----------------------------|-----| | | | | Вr | | | | PhCHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO Ph (47) + | 623 | | | | | MeO N Ms Ph | | | | Ph | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO Ph (41) + | 623 | | | | | MeO (29) MeO N Ms Ph | | | MeO HN N | Br OEt | BF ₃ •Et ₂ O, CH ₂ Cl ₂ .
rt, 1 h | MeO N Ms (53) + | 623 | | | | | MeO N Ms | | | | MeO OMe | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO N Ms (68) + | 623 | | | | | MeO N Ms | | | | (/)-Men O CHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO O O (<i>l</i>)-Men | 623 | | | | | MeO (51) N Ms O (-(/)-Men | | | | Ph CHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO N Ms (37) + | 623 | | | | | MeO N Ms (38) | | **Table 1. (Continued)** ### Table 1E (Continued) | substrate | reactant | conditions | product(s) and yield(s) (%) | ref | |---------------------------|---|---|---|-----| | | Ph CHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 1 h | MeO N Ms (2) + MeO N Ms (60) MeO Ph | 623 | | Ts N CO ₂ Me | | SnCl ₄ , MeCN,
50°, 18 h | MeO ₂ C OH MeO ₂ C NHAc Ts (11) Ts (46) | 164 | | | | SnCl ₄ , CH ₂ Cl ₂ ,
rt, 20 h | MeO ₂ C OH MeO ₂ C CI Ts Ts (73) (14) | 164 | | | (CH ₂ O) _n | HCO ₂ H, 50°, 18 h | MeO ₂ C
Ts—N (90), $\alpha;\beta = 1:1.5$ | 164 | | Ts N CO ₂ Me | (CH ₂ O) _n | HCO ₂ H, 50°, 22 h | Ts (50) (32) | 164 | | TMS HN CO ₂ Me | (CH ₂ O) _n | HCO₂H, rt, 60 h | (60)
N CO ₂ Me | 164 | | MeO HN S | MeCHO
(O)-Tol | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
–78°, 1 h | MeO (89), $dr = 93.7^d$ MeO (89) S(O)-Tol | 624 | | | PrCHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
–78°, 1 h | MeO (84), $dr = 96.4^{d}$ MeO $S(O)$ -Tol | 624 | | | CH ₃ (CH ₂) ₄ CHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
–78°, 1 h | MeO (85), $dr = 91:9^d$ MeO (80)-Tol | 624 | | | i-BuCHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
–78°, 1 h | MeO (85), dr = 92.8^d MeO , i -Bu | 624 | | | i-PrCHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
–78°, 1 h | MeO (43), dr = $96:4^d$ MeO i -Pr | 624 | | | PhCH₂CHO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
-78°, 1 h | MeO (51), dr = 77:23 ^d MeO Ph | 624 | | MeO HN S | MeCHO
(O)-Tol | 1. BF ₃ *Et ₂ O, CH ₂ Cl ₂ ,
-78°, 1 h
2. HCl, EtOH | MeO (70), ee > 98% MeO mainly S | 624 | a Other isomers were detected by NMR. b Fmoc-L-Trp-Wang resin was used for these solid-phase reactions. c This reaction might proceed via a Pictet—Spengler reaction instead of an N-acyliminium ion cyclization. d R,R/S,S ratio. Table 2. Unimolecular Reactions with Benzenoids Table 2A. Unimolecular Reactions with Benzenoids: α-Hydroxy/Alkoxy/Thioalkoxy/Acyloxy/Halo Amides and Enamides | Enamides | | | | |---|---|--|-----| | substrate | conditions | product(s) and yield(s) (%) | ref | | C9 H H CCI3 | MsOH, C_6H_6 , rt | H
NH
CCl ₃ | 386 | | PhO H CO₂H | MsOH, C_6H_6 , rt | O NH (-) | 386 | | Ph N OH | MsOH, C ₆ H ₆ , rt | O Ph (-) + Ph H (73) | 386 | | | H ₄ P ₂ O ₇ , 140-160°, 1 h
PPA, 140-160°, 1 h
H ₃ PO ₄ , 140-160°, 1 h
P ₂ O ₅ , CHCl ₃ , reflux, 1 h
P ₂ O ₅ , DCE, reflux, 1 h | (77)
(57)
(28)
(3)
(14) | 359 | | C ₁₀ Ph CCCI ₃ O OH | MsOH, C_6H_6 , rt | CCl ₃ NH CCl ₃ Ph (82) | 386 | | Ph CO ₂ H | MsOH, C ₆ H ₆ , rt | O O O O O O O O O O | 386 | | C ₁₀₋₁₁ R NH OH | | R O H R R R R R R | 359 | | $\frac{R}{\text{-OCH}_2\text{O}} - \text{OCH}_2\text{O} - \text{OMe}$ | $H_4P_2O_7$, rt, 14 h $H_4P_2O_7$, 60°, 1 h $H_4P_2O_7$, rt, 14 h $H_4P_2O_7$, 60°, 1 h | I I | | | C ₁₂ Ph H N CO ₂ H O OH | MsOH, C ₆ H ₆ , rt | O
NH
CO ₂ H | 386 | | Ph HO NO | TsOH, C ₆ H ₆ , 80° | N (-) | 467 | | Substrate | conditions | product(s) and yield(s) (%) | ref | |-------------------------|--|---|-----| | | | NHCO ₂ Me | | | Ph NHCO ₂ Me | | | 625 | | | Tf ₂ O, CH ₂ Cl ₂ , 0-25° | (<5) | | | | CSA, CH ₂ Cl ₂ , rt | (<5) | | | | TFA, CH ₂ Cl ₂ , rt | (<5) | | | | (I-PrO) ₂ TICl ₂ , CH ₂ Cl ₂ , 0-25° | (<5) | | | | TFA, CH ₂ Cl ₂ , -78-0° | (12) | | | | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , -60° | (55) | | | | TiCl ₄ (0.5 eq), CH ₂ Cl ₂ , -78° | (15) | | | | TiCl ₄ (1.0 eq), CH ₂ Cl ₂ , -78°
TiCl ₄ (1.5 eq), CH ₂ Cl ₂ , -78° | (25)
(80) | | | Ph | | | | | 10 m 10 | | H | | | но он | BF ₃ •Et ₂ O, rt, 14 h | HO * `OH
(36) | 392 | | | HCl, reflux 12 h | (22) | 392 | | | BF ₃ •Et ₂ O, 0°-rt, 2 days | (66) | 391 | | H NHCO ₂ Me | | H | | | NHCO ₂ Me | TFA, rt | 0 (67) | 386 | | Ö | | NHCO₂Me | | | i13
Cl. 🚕 🛆 | CI_ | | | | | TfOH, CH ₂ Cl ₂ , 7 days | | 358 | | N PO | | N = 0 N = 0 | | | HO
F ₃ C | | F ₃ C C _I F ₃ C II | | | H NHCO ₂ Me | | · (—) , I:II = 9:1 | | | NHCO ₂ Me | TFA, rt | N (95) | 386 | | | IFA, IL | / \ | 300 | | • | | NHCO₂Me | | | Ph | | | | | HO N O | | N | 358 | | F ₃ C \ | | F ₃ C | | | | TFA, 2 days | (85) | | | | TfOH, CH ₂ Cl ₂ , 1 day | (100) | | | PhOH | | ~ (° | | | Me_N | TFA, reflux | N Me (69) | 374 | | | | | | | R
- | | R
I | | | /leO | HCO₂H, rt, 14 h | MeO | 120 | | R' N-O | 1100211, 11, 1411 | R' N O | 120 | | к но о | | | | | | | R R'
OMe H (73) | | | | | H OMe (70) | | | Ph | | | | | MeO | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | H ₂ SO ₄ | (86) | 325 | | | H ₂ SO ₄ , rt, 4 h | (85) | 323 | | | = : | | | Table 2. (Continued) | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|--|-------------------------------|-----------------| | Ph N O | | NEO | 429 | | -\$ | | +5 | | | , (| TsOH, CH_2Cl_2 , reflux, 112 h
HCO_2H , reflux | (74)
(—) | | | MeO | | MeO | | | MeO HO S | HCO₂H, rt, 112 h | MeO (84) | 429 | | Ph | | ОН | | | O N O | | N ₀ | | | H´ \/ | | H | | | | TiCl ₄ , CH ₂ Cl ₂ , -10°, 20 h
SnCl ₄ , CH ₂ Cl ₂ , -10°, 20 h | (80)
(60) | 626, 627
627 | | | TMSOTf, CH ₂ Cl ₂ , -10°, 20 h | (78) | 627 | | | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , -10°, 20 h | (0) | 627 | | Ph HO. N. O | TFA:TFAA (12:1), CH ₂ Cl ₂ , | (40) | 386 | | HO NH | reflux, 2 days | NH | | | C ₁₄ | | I | | | Ph | | | | | o No | | NO | 320 | | ° 'oʻ | TsOH, toluene, reflux | (50) | | | | PPA, toluene, reflux | (43) | | | Ph_\ | | он он | | | / (н | TiCl ₄ , CH ₂ Cl ₂ , -78°, | + | 627 | | O N O | 20 h | N O N O | | | | | (23) (68) | | | Ph
\ | | oн oн | | | √ H | TiCl ₄ , CH ₂ Cl ₂ , -10°, | | 626 | | 0 0 | 20 h | N ₀ T _N | 627 | | <u> </u> | | (29) (58) | | | Ph O | | | | | N I | TiCl ₄ , CH ₂ Cl ₂ , -10°, | H. NO I: (65) | 628 | | O H Ph O | 20 h | H II: (34) | - | | or N | ì |
ОН | | | O H |] | | | | Ph | | | | | EtO _W N O | HCO ₂ H,
reflux | N (<20) | 629 | | <i>}/</i>
но́ | | H′) | | | MeO | | MeO | | | MeO HOM NO | HCO ₂ H, rt, 14 h | MeO (72)
N (73) | 398
119 | | MeO HOM | | H (75) | 120 | | / | | • | | | Table 2. (Continu | Table 2A (Continued) | | | | |-------------------|---|---|----------------------------------|------------| | | substrate | conditions | product(s) and yield(s) (%) | ref | | | PhS O N EtO | SnCl ₄ , CH ₂ Cl ₂ ,
rt, 24 h | S (26) | 384 | | | Ph HOm N O | BF ₃ +Et ₂ O, CH ₂ Cl ₂ ,
rt, 48 h | N O (74) | 391
629 | | | Ph Me N O | TFA, reflux | Me
N (—) | 374 | | | Ph HO N O | HCl, 0°, overnight | N O (94) | 407 | | | Ph S N O | TICI ₄ , CH ₂ Cl ₂ ,
–78° to rt, 2 h | S H (99) | 394 | | | MeO HO NO | ТsОН, С ₆ Н ₆ , 80° | MeO N O (high) | 467 | | | MeO O O O O O O O O O O O O O O O O O O | 1. TiCl ₄ , CH ₂ Cl ₂ ,
-78°, 1 h
278° to rt | MeO + MeO (19) | 429 | | | Ph EtO N O | TsOH, C ₆ H ₆ , 80° | (-) | 467 | | | MeO HO S | TsOH, CH ₂ Cl ₂ , reflux,
114 h | MeO N (66) | 429 | | | Ph
EtO ₃₀ NO | | HO OH | 392 | | | | BF ₃ *Et ₂ O, rt, 14 h
HCI (10%), reflux, 12 h
HCO ₂ H, reflux, 17 h | (46)
(49)
(55) | | | | C ₁₅ | TFA, reflux, 5 h | (65) | 373 | | | Ph N Me | TFA, reflux | Me
N CO ₂ Et (100) | 49 | | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|--|--|-----| | O
OH | TFA, rt, 24 h | R H (86) 2-Br (84) 4 4-Br (82) 2 1-Cl (46) 3-Cl (42) 4-F (91) 4-Br-2-Cl (78) | 600 | | MeO HO S | HCO₂H, rt, 113 h | MeO (quant.) | 429 | | Ph N O | TFA, reflux, 3 h | N (93) | 355 | | Ph NO | TFA, reflux, 3.5 h | N (55) | 355 | | MeO | TsOH, $\mathrm{CH_2Cl_2}$, reflux | MeO (53) | 320 | | MeO HO NO F ₃ C | TFA, 24 h
TfOH, CH ₂ Cl ₂ , 2 4 h | MeO F ₃ C N O (97) (97) | 358 | | OMe
NHAc
CO₂Me | MsOH, 0° | + | 362 | | Ph EtO N O | TMSOTf, CH ₂ Cl ₂ , –78° PPA, 100°, 1.5 h | (85) 2:1
N O (62) | 116 | | MeO HO NH | HCO ₂ H, rt, 14 h | MeO NHO (27) | 406 | | MeO HO NO | HCO₂H, rt, 14 h | MeO (60) | 119 | Table 2. (Continued) | Table 24 | (Continued) | |-----------|-------------| | I avic ZA | (Commucu) | | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|---|--|-----| | MeO N S | TsOH, C ₆ H ₁₂ , reflux, 24 h | MeO N O (84) | 156 | | MeO N O Eto | SnCl ₄ , CH ₂ Cl ₂ , rt, 24 h | MeO (26) | 384 | | MeO HO NH | TFA:TFAA (12:1), $\mathrm{CH_2Cl_2}$, reflux, 2 days | MeO (72) | 320 | | MeO O N NH | TFA:TFAA (12:1), CH_2Cl_2 , reflux, 2 days | MeO (68) | 402 | | MeO N S NOME | TsOH, C ₆ H ₁₂ , reflux, 24 h | MeO N (84) | 156 | | C16
MeO
MeO | TiCl ₄ , CH ₂ Cl ₂ , –10°, 20 h | MeO H OH (68) | 628 | | OMe
OMe | TiCl ₄ , CH ₂ Cl ₂ , -78°
to rt, 20 h | MeO OH MeO α β = 1.9:1 | 627 | | OH R | TsOH, toluene,
reflux, 3 h | 0
N
0
H
H
(70)
4
2-F
(20)
3
2-F,4-Cl
(25) | 600 | | OH
N-
O Ph | PPA, 150-170°,
1.25 h | (84) | 373 | | OH Ph | HCO₂H, rt, 18 h | O N H (> 90), trans | 124 | | OH Ph | H ₂ SO ₄ , 25°, 2 h | N (84) | 354 | Table 2. (Continued) | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|--|---|-----| | MeO NOO | TsOH, toluene,
reflux, 1 h | MeO (85) | 321 | | MeO ₂ C N H O O | TiCl ₄ , CH ₂ Cl ₂ , –78°
to rt, 5 h | CO ₂ Me O (87) | 427 | | Ph
HO N O | H ₂ SO ₄ , rt, 2 h | (45) | 630 | | MeO HO S | HCO ₂ H, rt, 113 h | MeO NeO (58) | 429 | | MeO NO | TsOH, C ₆ H ₆ , 80° | MeO (high) | 467 | | Ph OAc MeO ₂ C N OAc CO ₂ Me | SnCl ₄ , CH ₂ Cl ₂ ,
–78° to rt, 3 h | $\begin{array}{ccc} & & & \alpha \ (21)^a \\ & & CO_2 Me & \beta \ (62) \\ & & & \end{array}$ | 166 | | C ₁₆₋₁₇ Ph | H ₂ SO ₄ , rt, 2 h | X
CH ₂ (60)
O (63)
S (70) | 630 | | C ₁₇ | TMSOTf, CH ₂ Cl ₂ .
-10° | O
(99), α:β = 24:1 | 117 | | Ph
HO N O | HCO₂H, reflux | (88) | 631 | | O Ph | MsOH, CH ₂ Cl ₂ , reflux
CH ₂ Cl ₂ , -10° | (91)
Ο Ο Ο Η Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο | 117 | | | $SnCl_4$ $TiCl_4$ $BF_3 \cdot Et_2O$ H_2SO_4 $TMSOTf$ | (65) (33)
(62) (31)
(74) (25)
(69) (11)
(95) (2) | | | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |-----------------------------------|---|--|-----| | HO_N_O | TFA, 1.5 days | F ₃ C (52) | 358 | | Ph
/-PrO N
Ac | 1. Me ₂ NH, DMF,
18 h, rt
2. TiCl ₄ , CH ₂ Cl ₂ ,
-78° to rt | H N (95) | 236 | | MeO O N N HO MeO | TFA, rt, 24 h | MeO | 600 | | OMe O Me EtO ₂ C OMe | TFA, reflux | OMe
N Me
(100)
OMe CO ₂ Et | 49 | | MeO N-Me | ⁹ TFA, reflux | MeO N N N (100) MeO EtO ₂ C | 49 | | ON OH | PPA, 150-170°,
1.25 h | (75) | 373 | | C ₁₈ MeO HO NH | HCO ₂ H, rt, 1 4 h | MeO NH (63) | 406 | | | - | O (55) | 343 | | HO NO | MsOH, CH ₂ Cl ₂ , reflux | (85) | 631 | | Ph → NHCO₂Bn OH | TiCl ₄ , CH ₂ Cl ₂ , -78°, 1 h | NHCO ₂ Bn (78) | 625 | | Ph NHCO ₂ Me | TiCl ₄ , CH ₂ Cl ₂ , -78°, 1 h | NHCO ₂ Me (76) | 625 | ## Table 2. (Continued) | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|---|--|------------| | the section of the time | | OMe | | | MeO CO ₂ Me O N N OAc | TfOH, CH ₂ Cl ₂ , 20°,
75 min | AcO H (53) + CO ₂ Me | 632 | | | | AcO H (17) CO ₂ Me | | | | MeO
TfOH, CH ₂ Cl ₂ ,
20°, 75 min | CO_2Me CO_2 | 389 | | MeO NO NO Ph | HCO₂H, rt, 14 h | MeO (65) | 119 | | EtO NO OAC | A : 1. HCO ₂ H, reflux, 17 h 2. AcCl, EtOH B : 1. MsOH, rt, 1 h 2. AcCl, EtOH | N O OAc (90) (82) | 392 | | MeO N N | C: 1. BF ₃ •Et ₂ O, rt, 1.5 h 2. AcCl, EtOH H ₃ PO ₄ , reflux, 3 h | MeO N (78) | 349 | | MeO OMe | H₃PO₄, HCO₂H, rt | ON H H OME MEO (29) | 350
351 | | MeO NO | TsOH, C ₆ H ₆ , reflux | MeO (90) | 317 | | MeO NO | H ₃ PO ₄ (85%) | MeO (—) | 601 | Table 2. (Continued) | Table | 2A (| Continued) | |----------|------|------------| | I abic . | 44 (| Continucut | | Table 2A (Continued) | | | | |-------------------------------|---|---|------------| | substrate | conditions | product(s) and yield(s) (%) | ref | | MeO OH Me | TFA, rt, 1 h | i-PrO ₂ C H O (22) + | 419
423 | | | | HO N N Me (66) | | | Br CO2i-Pr N NOH | TFA, rt, 13 h | MeO OH H (97) | 419 | | C ₁₉ OH OH O PH | TFA, reflux, 4.5 h | (88) | 355 | | CI O Ph | TFA, reflux | CI (-) | 374 | | MeO HO NO Ph | HCO ₂ H, rt, 14 h | MeO H N (70) | 398
119 | | Ph HO _{1/1} N O | HCl, 0°, overnight | N O R (95)
C ₆ H ₁₁ (95) | 407 | | R^1 R^2 R^1 R^2 R^2 | | R ¹ O CO ₂ Et | 68
80 | | н н
н он
он он | PPA, 80°, 0.5 h
H ₃ PO ₄ , 80°, 0.5 h
BF ₃ •Et ₂ O, reflux, 2 h | (96)
(31)
(56) | | | MeO N N S(O)Me | TsOH, DCE, reflux,
10 min | MeO (60) + | 72
73 | | MeO | | MeO NH (8) | | | HO N CHO OMe | MsOH, MeCN,
rt, 6.5 h | MeO OMe (75) | 305 | | Table 2. (Continue | d) | | | | |--------------------|--
--|--|----------| | | able 2A (Continued)
substrate | conditions | product(s) and yield(s) (%) | ref | | | OH O HO | TsOH, toluene, reflux | (70) | 500 | | , | MeO OMe AcO OH CO ₂ Me | TfOH, CH ₂ Cl ₂ , 2 h | MeO OMe AcO H (80) CO ₂ Me | 632 | | | MeO NO | TiCl ₄ , CH ₂ Cl ₂ , -78° to rt, 20 h | MeO OH (98) ^b | 633 | | | Ph NO | TFA, CH ₂ Cl ₂ , rt,
3 days | Ph Ph O (63) + N O (30) | 634 | | (| OH
N
Ph | AlBr ₃ , o-diClC ₆ H ₄ , –5°
AlBr ₃ , CH ₂ Cl ₂ , –5° | 1 + N II + N II Ph 7:3 9.5:0.5 | 635
1 | | | | AlBr ₃ , o -diClC ₆ H ₄ , rt
AlBr ₃ , o -diClC ₆ H ₄ , 180° | 1:1
0.6:9.4 | | | | Ph CO ₂ Me CO ₂ Me | TiCl ₄ | $ \begin{array}{cccc} MeO_2C & CO_2Me \\ H & & \\ H & & \\ H & & \\ \end{array} $ (79) | 395 | | t | MeO O O O O O O O O O O O O O O O O O O | 1. TiCl ₄ , CH ₂ Cl ₂ , -78°, 1 h
278° to rt | MeO (59) | 325 | | | MeO Ac N CI NO2 | AICI ₃ , DCE, rt, 3 h | MeO N A_C (86) | 364 | | С | Ph OH Ph | PPA, 150°, 1.25 h | N N (72) | 355 | | | Ph Ph EtO La N O | PPA, rt, 1 h | Ph (83) | 45 | | | Me OH N O Ph | PPA, 150°, 2 h | Me (62) | 355 | Table 2. (Continued) | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|--|--|------------| | Ph | CONTINUENCE | Programme Project (10) | 101 | | R Ac | AcOH, HCI, H ₂ O,
reflux, 8 h | R Br (57) NH H (71) | 602 | | MeO HO N O HO O HO O O O O O O O O O O O O | CSA, toluene, 80° | MeO H (69) | 307a | | Ph NO NO S Ph | TFA, CH ₂ Cl ₂ , rt,
3 days | Ph Ph O (22) | 634 | | Ph
N
Ph | AICI ₃ , DCE, –5° | HO Ph O Ph O (20) | 375 | | PhthN O O | PPA, 100°, or MsOH
or TfOH or TMSOTf | (80-94)
PhthN CO ₂ H | 378 | | O N Ph | TFA, reflux | O N (69) | 374 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | PPA, 80°, 3 h
H ₃ PO ₄ , rt, 50 min | R^1 R^2 N CO_2Et R^2 | 68
80 | | OMe
NHBz
CO ₂ Me | MsOH, 0°
SnCl ₄ , CH ₂ Cl ₂ , –78°
TMSOTf, CH ₂ Cl ₂ , –78° | HI | 376 | | MeO PhS NO | BF ₃ •2AcOH, CH ₂ Cl ₂ , rt | MeO (98) | 343
346 | | OH OM | $\mathrm{TiCl_4},\mathrm{CH_2Cl_2},-78^\circ\mathrm{to}\mathrm{rt}$ le | OMe (32) | 635 | Table 2. (Continued) | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|--|---|-----------| | SEt OMe | TiCl ₃ , H ₂ O ₂ , MeCN, MeOH, rt, 15 h | OMe
OMe (50) | 346 | | MeO OMe NOMe | 1. TiCl ₄ , CH ₂ Cl ₂ , -78°, 1 h
278° to rt | MeO OMe (90) | 325 | | C ₂₁ OAc OMe ACO OMe CO ₂ Me | TfOH, CH ₂ Cl ₂ , 20°,
75 min | AcO OMe AcO H (60) CO ₂ Me | 632 | | OH OMe | | OMe
OMe
+ ONe | 635
Me | | | $\begin{split} \text{AlBr}_3 &\text{ (1 eq), o-diClC}_6\text{H}_4, 180^\circ \\ \text{AlBr}_3 &\text{ (1 eq), CH}_2\text{Cl}_2, \text{ rt} \\ \text{AlBr}_3 &\text{ (3 eq), } -5^\circ, 2 \text{ h} \\ \text{AlBr}_3 &\text{ (3 eq), rt, 2 h} \end{split}$ | (78) (20) OMe
(72) (22)
(—) (42)
(—) (100) | | | Ph O O O O O O O O O O O O O O O O O O O | H ₂ SO ₄ , rt, overnight | N N N N N N N N N N | 636 | | O
Ph
OH | PPA, 135°, 4 h | Ph (75) | 354 | | Ph OH Ph | PPA, 100-125°, 1 h | Ph _{3,26} NH (56), $\alpha:\beta = 1:3.3$ | 603 | | Ph OH N—Ph | TFA, reflux, 3 h | Ph (72) | 355 | | O N O O CO ₂ Et | H ₃ PO ₄ (anhyd.),
rt, 2 h | HO N (3) | 84 | | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------------|--|---|------------| | HO N CO ₂ Et | MsOH, MeCN,
rt, 1.5 h | MeO OMe HO CO ₂ Et | 305 | | o N Ph | TFA, reflux 0 | (58) + O Ph (25) ^d | 374 | | Ph
Ph
O | AICl ₃ , DCE, –5°
HO | (18) + N (72) | 375 | | Ph
O N
Pri O | AlCl ₃ , DCE, –5° | (67) + (21)
Ph O Ph O | 375 | | MeO CHO MeO OMe | MsOH, MeCN, rt,
4 h | MeO H OMe CHO OMe (68) | 604 | | Ph
Ph
EtO _n , N | PPA, 100°, 6 h | Ph Ph (29) + | 116 | | | | Ph (14) | | | Ph NPhth O NH MeO CO ₂ Me | TfOH, CH ₂ Cl ₂ ,
rt, 17 h | NPhth $O \qquad (82), \ \alpha:\beta = 1:11$ MeO_2C | 378 | | MeO PhS N O | BF ₃ •2AcOH, CH ₂ Cl ₂ , rt | MeO (98) | 343
346 | | MeO NO O | TsOH, $\mathrm{C_6H_6}$, reflux | MeO N O (84) | 317 | Table 2. (Continued) Table 2A (Continued) | Table 2A (Continued) | conditions | product(a) and diald(a) (f)() | | |---|---|---|----------| | substrate MeO. | conditions | product(s) and yield(s) (%) | ref | | MeO CO ₂ Et | | MeO CO ₂ Et | 68
80 | | | H ₃ PO ₄ , rt, 1.5 h
PPE, 90°, 1.5 h
BF ₃ *Et ₂ O, CH ₂ Cl ₂ , rt, 3 h
AgClO ₄ , C ₆ H ₆ , 80°, 0.5 h
POCl ₃ , toluene, 100°, 2.5 h
H ₃ PO ₄ , MeOH, H ₂ O, reflux, 1
AgBF ₄ , C ₆ H ₆ , reflux, 11 h
AlCl ₃ , Me ₂ S, rt, 20 min
HCI-MeOH (10%), reflux, 2.5 | (40)
(41) | | | MeO H | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 3 h | MeO NO CO ₂ Et (90) | 86 | | HO OMe OMe OMe | TsOH or HCl, C ₆ H ₆ ,
reflux | OMe OMe (90), cis | 605 | | MeO HO N Bn | HCO₂H, rt, 14 h | MeO NO (72) | 406 | | MeO N O SMe | TsOH, HO(CH ₂) ₂ OH, reflux, 5 h | MeO MeO N N SMe (69), $\alpha:\beta = 1:1.4$ | 79 | | MeO NO CO ₂ Et | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 20 min | MeO (100) MeO (100) | 68
80 | | MeO i-PrO ₂ C § N Me MeO MeO MeO MeO MeO MeO MeO MeO MeO | H₂SO₄, TFA, rt, 2 h | MeO H N Me OMe (50) + | 421 | | | | MeO H N Me (42) | | | | TFA, reflux, 24 h | MeO H N Me N Me N Me N Me N Me N $MeO CO_2i-Pr$ | 421 | | substrate | conditions | product(s) and yield(s) (%) | ref | |---------------------------------------|---|---------------------------------|-----| | MeO i-PrO ₂ C N MeO MeO O | H₂SO₄, TFA,
rt, 2 h | MeO HN/Me MeO (93), α:β = 1:1.1 | 421 | | | TFA, reflux, 24 h | MeO H N Me (98) | 421 | | MeO N O S(O)Me | TsOH, C ₆ H ₆ ,
reflux, 1 h | MeO (19) + | 78 | | | | MeO N O (53) | | | O Ph
OAC
OTBDMS | HCO₂H, reflux, h AcCl, EtOH, rt, h | O (20) | 393 | | MeO O S(O)Et | TsOH, C_6H_6 , reflux | MeO (78) MeO SEt | 344 | | MeO S(O)Et MeO HO | MsCl, Et₃N CSA, benzene, reflux Nal, acetone NaH, THF, reflux | MeO NO (34) | 637 | | MeO S(O)Et MeO Br CO ₂ Me | CSA, toluene, reflux | MeO HN O (88) ^e SEt | 637 | | Ph NO ₂ | neat, 130°, 24 h | Ph (55) | 371 | | Ph O CI N Ph | neat, 130°, 24 h | NO ₂ O N Ph (66) | 371 | Table 2. (Continued) | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---
--|--|-----| | ~ .0 | | \(\triangle \chi^0 | | | Ph CI N Ph | neat, 130°, 24 h | N _{Ph} (68) | 371 | | NO ₂ | | NO ₂ | | | Ph O CI N Ph | neat, 130°, 24 h | O (40) | 371 | | C ₂₂ O ₂ N O Ph | neat, 130°, 24 h | O ₂ N O Ph (49) | 371 | | OH Ph | TFA, reflux | H N (93) | 439 | | Ph OH Ph | PPA, 100-110°, 1 h
TFA, reflux, 2 h | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 638 | | MeO HO NO | HCI, MeOH | MeO N (100) | 639 | | O
N
N
HO Ph | | HO SPh I + | 640 | | | A: TFAA, CH ₂ Cl ₂ , rt, 12 h B: TFAA, Py, rt, 5 h C: 1. TFAA, CH ₂ Cl ₂ , rt, 8-12 h 2. TFA, rt, 12 h | I II (minor) ^f (major) (56) ^g (0) (42) | | | N
N
Ph | TiCl ₄ , CH ₂ Cl ₂ , –10° | OH (94), α:β = 46:1 | 117 | | O N O N O Ph | PPA, H ₃ PO ₄ , 30°,
3.5 h | O N O (37) | 354 | Table 24 (Continue | ed)
Table 2A (Continued) | | | | |--|---|---|----------| | substrate | conditions | product(s) and yield(s) (%) | ref | | MeO O Ph
N Ph | neat, 130°, 24 h | MeO (45) | 371 | | MeO NO | TFA, CH ₂ Cl ₂ ,
rt, 48 h | MeO (93) MeO OMe OMe | 431 | | MeO Ph | neat, 130°, 24 h | MeO N-Ph (66) | 371 | | MeO CI N Me | AgOTf, CH₂Cl₂,
rt | MeO (58) | 361 | | MeO CO ₂ Et | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 3 h | MeO NO CO ₂ Et (91) | 86 | | MeO R' R MeO R' R | BF ₃ •Et ₂ O, CH ₂ Cl ₂
reflux, 24 h | MeO CO ₂ Et | 86 | | H Me | rt, 3 h | (90) | | | MeO O OTBDMS | TsOH, CH ₂ Cl ₂ ,
reflux, 1 h | MeO (76) MeO OTBDMS | 321 | | Ph O | AICI ₃ , DCE, –5° | HO Ph O Ph O (75) | 375 | | MeO HO N CO ₂ Me | BF ₃ •Et ₂ O | MeO (—) EtS CO ₂ Me | 78 | | Ph Ph O | PPA, 100°, 24 h | Ph (quant.), α : β = 95:5 N (41%); purified α isomer | 45
67 | | Table 2A (Continue | conditions | product(s) and yield(s) (%) | ref | |--------------------|--|--|----------| | MeO MeO | H ₃ PO ₄ , 50°, 2 h | MeO (63) MeO (CO ₂ Et | 68
80 | | MeO HO | O HCO₂H, rt, 14 h | MeO N O (53) | 405 | | HO Ph | 1. TFAA, CH ₂ Cl ₂ , rt, 8-12 h
2. TFA, rt, 12 h | O S (62) | 640 | | SP
HO | h TFA, rt, 12 h | O (58) | 640 | | MeO Neo N | OH TFA, CH ₂ Cl ₂ , reflux | MeO (98) | 433 | | Ph o OH | PPA, 100-110°, 1 h
or
TFA, reflux, 3 days | OMe (74) , $\alpha:\beta=1:3.9$ | 638 | | Ph OOH Ph | AlCl₃, DCE, -7°, 4 h | Ph (20), α:β = 1:4 | 638 | | c_{23} | 1. DMD, MeOH,
-78 to 30°
2. BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
OBn -45 to 0° | $ \begin{array}{cccc} O & & & & & & & & & & & \\ O & & & & & & & & & & & \\ O & & & & & & & & & & & \\ HO & & & & & & & & & & \\ BnO & & & & & & & & & \\ \end{array} $ (80) ^h | 641 | | PhthN O B | 1. TfOH, Tf ₂ O, $CH_2Cl_2, \text{ rt. 21 h}$ 2. CH_2N_2 , MeOH, CH_2Cl_2 | PhthN O CO_2Me (72) | 399 | | MeO MeO | neat, 130°, 24 h | MeO Ph (76) | 371 | Table 2. (Continued) | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|---|--|-------------| | ∽ NO | | MeO O | | | [" | | | | | 0 N Y | neat, 130°, 24 h | MeO Ph (76) | 371 | | MeO CI | | (10) | | | | | | | | MeO / | | NO ₂ | | | Ph
 | | 2 | | | O N Ph | | MeO | | | MeO CI | neat, 130°, 24 h | N (55) | 371 | | | | MeO Ph | | | MeO | | Ρh | | | 0 | | MeO | | | MeO | PPA, H ₃ PO ₄ , 30°, 4 h | | 354 | | | 1174,1131 04,00 , 411 | MeO Ph (64) | 00 - | | MeO HO Ph | | PII (| | | FII — | | | | | Ph | | \sim | | | N ~ ~ OH | | | | | N | PPA, 100-125°, 1 h | N (9) | 376 | | IN Ph | | The Second Secon | | | 0 | | O Ph | | | | | | | | Ph N Bn | | N Bn | | | ACO. N. O. | SnCl ₄ , CH ₂ Cl ₂ | $\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | 428 | | \downarrow \downarrow \downarrow \sim | | | | | MeO ₂ C O | | MeO ₂ C O | | | ^ | | \sim | | | | | \ \\ \s | | | s s | | Š 🗸 | | | | TsOH, C ₆ H ₆ , reflux, | 0 (95) | 385 | | CO ₂ Bn | 20 min | | | | N SOZEM | | O ^y VN
CO₂Bn | | | ОН | | CO2511 | | | | | | | | /leO | | MeO | | | MeO N S(O)Et | TsOH, C ₆ H ₆ , reflux | MeO (69) | 344 | | Д " | | н \ / | | | Ph \ | | Ph | | | | | | | | MeO | | MeO | | | MeO | | MeO N I + | 69 | | | | () | | | CO₂Et | | CO ₂ Et | | | 0 0 | | 0 0 | | | | | | | | | | MeO | | | | | | | | | | MeO | | | | | OH
CO ₂ Et | | | | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , | (35) (35) | | | | reflux, 40 min | (35) (35) 0 | | | | AgClO ₄ , C ₆ H ₆ , 90°, 1 h | (25) (32) | | | | 341-01-01-01-1-11 | (, (, | | | Oelv | | MeO | | | N-O | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , | N (100) | 70 | | MeO OH | rt, 2 h | MeO OH | , 5 | | CO ₂ Et | * | CO₂Et | | | o×o | | o×o | | | | | / | | | | | | | Table 2. (Continued) |
Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|--|---|-----| | MeO O O O Me | BF ₃ •Et ₂ O | MeO N (—) | 88 | | MeO OEt | TsOH, C_6H_6 , reflux | MeO H + Et | 606 | | MeO | | MeO H Iα (24) Iβ (24) Iβ (24) Iβ (20) | | | MeO Aco N O TBDMSO | | MeO H N O RO | 393 | | Ph OH OMe | BF ₃ •Et ₂ O , -78 to -30°, 4 h BF ₃ •Et ₂ O , -78 to -30°, 4 h | H (83) TBDMS (86) | 638 | | MeO OMe | PPA, 100-110°, 1 h | MeO OMe (63), α : β = 1:3.9 | 638 | | Ph TBDMSO NO | | N N O H | 629 | | | BF ₃ *Et ₂ O
TiCl ₄ , CH ₂ Cl ₂ , –78°, 2 h | (10)
(77) | | | C ₂₃₋₂₆ MeO N N N N R R He or Bu | TFA or SiO ₂ | MeO R N (0) R N Me | 433 | | C ₂₄ N CO ₂ Me NPhth | 1. TFA, CH ₂ Cl ₂ , 25°
2. Ph ₂ C=N ₂ , CH ₂ Cl ₂ | PhthN O CO ₂ CHPh ₂ | 118 | # Table 2. (Continued) | HCl, rt, 48 h PPA, 120-125°, 1 h TiCl ₄ , CH ₂ Cl ₂ , -78°, 1 h | NHCO ₂ Bn h (10) (55) (19), α:β = 1:1.4 (10) (42) | 346
638
625 | |--|--|--| | TiCl ₄ , CH ₂ Cl ₂ , -78°, 1 ł | NHCO ₂ Bn NHCO ₂ Bn (80) | 625 | | | h (80) | | | TFA, reflux, 60 h | Ph | 385 | | | | | | | Ph (20) | | | POCl ₃ , 50°, 2 h | MeO NO (91) | 354 | | TsOH, C ₆ H ₆ , reflux | CO ₂ Me
SEt (79) | 344 | | TfOH, CH ₂ Cl ₂ , rt,
overnight | PhthN O CO ₂ H | 380 | | PPA, 100-125°, 1 h | N | 376 | | TFA, reflux, 50 h | Ph (26) | 376 | | | TfOH, CH ₂ Cl ₂ , rt,
overnight
PPA, 100-125°, 1 h | TfOH, CH ₂ Cl ₂ , rt, overnight PhthN O CO ₂ H PPA, 100-125°. 1 h (4) (73) TFA, reflux, 50 h | Table 2. (Continued) | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|--|---|------------| | Ph OH N N N N N N N N N N N N N N N N N N | TFA, reflux, 3 h | NPh (63) | 355 | | MeO OH | H ₃ PO ₄ :MeOH (1:1),
90°, 18 h | MeO N O (-) | 60 | | ÓBn O CO ₂ Et MeO MeO Br CO ₂ i-Pr | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 4 h | R = H and R = Me H CO_2 Et CO_2 Et CO_2 Et | 86 | | MeO OBn Me | H ₂ SO ₄ , TFA, rt, 21 h
HCO ₂ H, 70°, 1 h | MeO H Me (65) (11) | 419
423 | | MeO HO Bu | TFA, CHCl ₃ , reflux | MeO Bu N O (95) | 607 | | MeO HO Bu | TFA, CHCl ₃ , reflux | MeO NO (75) | 607 | | MeO O N OH Bu Bn | TFA, CH ₂ Cl ₂ , reflux | MeO Bu N (89) | 433 | | C ₂₆ OCO ₂ Et OH | BF₃•2AcOH, CH₂Cl₂.
24 h , rt | EtO ₂ C-OH
ON
Bn OMe | 350 | | CO ₂ Me N,Bn SEt | (Me ₂ SSMe) [*] BF₄ ⁻ | CO_2Me (53)
N-Bn
O
SEt | 344 | | MeO O N OH S | TFA, CH ₂ Cl ₂ , rt, 12 h | MeO (85) | 206 | Table 2. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |--|---|---------------------------------------|-----| | MeO | | MeO | | | | TsOH, C ₆ H ₆ , reflux, |] (51) | 73 | | MeO | 10 min | MeO | | | S(O)Me | | H | | | $\overline{}$ | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | |
OBn | | ة
OBn | | | | | | | | MeOCO ₂ Et | BF ₃ •Et ₂ O, CH ₂ Cl ₂ | MeO CO ₂ Et | 81 | | N-PO | 5. 3 2.20, 0.1.20.2 | N O | 82 | | MeO | | MeO R | | | CO ₂ Et | | CO ₂ Et | | | × 3522. | | 0×0 | | | Ŭ R R' | | | | | н он | reflux, 1.5 h | (87) | | | он н | reflux, 3.5 h | (—) | | | | | | | | | | | | | - 0 () | 4 7544 011 01 1 0 401 | | | | | 1. TFAA, CH ₂ Cl ₂ , rt, 8-12 h | 0 | 640 | | N S | 2. TFA, rt, 12 h | | | | | | | | | HO `-Ph | | | | | | | | | | | | | | | C ₂₇ Q | | O (Bn | | | N Bn | | N H | | | , (] | HCO ₂ H, 18 h, rt | (quant.) | 230 | | OH | <u> </u> | | | | -Bn | | NH | | | Ac | | N H
Ac | | | | | | | | Ph
I | | Ph
 | | | MeO | 1100 11 1 111 | MeO | 405 | | N. 0 | HCO₂H, rt, 14 h | N. Q (48) | 405 | | MeO | | MeO | | | N Bn | | N Bn | | | ы | | | | | EtO ₂ C, | | OH
↓ | | | \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | BE JEN O CILICI | CO ₂ Et | 250 | | N B | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , | N (80) | 350 | | MeO H | 5 h, rt | | | | OMe | | MEO | | | | | OMe | | | ÇO ₂ Et | | N 011 | | | 1 0 | | OH OH | | | н, [о] | BF ₃ •2AcOH, CH ₂ Cl ₂ , | CO ₂ Et (88) | 350 | | N _{Bn} | 24 h, rt | N | | | | | N O Bn | | | Y V | | MeO | | | ÓMe | | | | | 0 | | M-0 | | | MeO, | | MeO | | | , N | TsOH, toluene, | | 87 | | MeO | reflux | MeO (65) | | | WeO CO₂M | | CO ₂ Me | | | | - | V | | | SEt | | 0 | | | | | MeO | | | MeO | | | | | N, OH | MsCl, Et ₃ N, CH ₂ Cl ₂ , | MeO O N + | 206 | | MeO | rt, 12 h
TMS | | | | н-> (-н | TIVIO | /~\" | | | | | (36) | | | | | MeO | | | | | | | | | | MeO | | | | | H - H | | | | | /~\ ·· | | | | | (36) | | Table 2. (Continued) | Table 2A | (Continued) | |----------|-------------| |----------|-------------| | Table 2A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|---|--|-----| | ĊНО | | CHO | | | MeO OTMS | | MeO OMe | | | YYYY | HCO ₂ H, rt, 5 h | N. N | 304 | | MeO OTMS OMe | | MeO | | | | | (82) | | | OMe | | (/ | | | C ₂₈ Ph | | Ph | | | MeO | | MeO. | | | T Y) | HCO ₂ H, rt, 14 h | | 405 | | MeO NO | | MeO (28) | | | HO N | | H | | | Bn | | Bn | | | MeO | | MeO、 | | | N-O | H ₃ PO ₄ (85%), MeOH, | | 347 | | MeO | reflux | MeO (90) | 348 | | N' H | | | | | | | | | | OMe | | | | | OMe | | | | | ÇНО | | CHO | | | MeO OTMS | | CHO OMe | | | | HCO ₂ H, rt, 3h | N | 304 | | MeO OTMS OMe | | MeO | | | しょ | | (70) | | | → `OAc | | (/ | | | ∠4-MeOC ₆ H ₄ | | | | | н | | óH ,∕∕ | | | EtO ₂ C. | BF ₃ •2AcOH, CH ₂ Cl ₂ | EtO ₂ C (71) | 350 | | \downarrow \downarrow \downarrow | 30 h, rt | , / , | | | O'S N'S | | 0 N | | | Bn ✓4-MeOC ₆ H ₄ | | Вn | | | EtO ₂ C | | | | | 0 | | | | | O N | | | | | Bn I:II = 3:2 | | | | | | | | | | C ₃₀
OMe | | QМе | | | MeO 1 | | OMe | | | | | | | | N Bn | HCO ₂ H, rt, 14 h | - Jan | 405 | | ŢŢ | | MeO (24) ^a | | | OH OH | | N O (+ 30% st. mat.) | | | MeO | | MeO | | | OMe | | N Bn | | | | | | | | | | \/ | | | MeO | TEA CH CL + | MeO | | | N O JOH | TFA, CH ₂ Cl ₂ , rt, | N O OR | 642 | | MeO | 3 days | MeO | 042 | | H> (\$ | | HS | | | 6 | | Ö | | | | | R = H (51) | | | | | $R = OC(O)CF_3$ (16) | | | _ | | 1 = 00(0)01 g (10) | | | C ₃₂ | | | | | MeO | | MeO | | | | | | | | MeO Bu N O OH | TFA, CH ₂ Cl ₂ , rt, | MeO NO OR | | | HO" \ / | 3 days | Bu* \ / | 642 | | H 0 | | H | | | | | | | | | | R = H (23) | | | | | $R = OC(O)CF_3 (63)$ | | | | | | | Table 2. (Continued) ### Table 2A (Continued) | | product(s) and yield(s) (%) | ref | |--|---|--| | 1. LiAiH(OBu-t) ₃ ,
THF, 0°, 1 h,
2. HCO ₂ H, 60°, 1 h | OMe
MeO OMe
NCO ₂ R
MeO OMe
(64)
(60)
(60)
(60)
(58) | 415
416 | | | THF, 0°, 1 h, | 1. LIAIH(OBu-t) ₃ ,
THF, 0°, 1 h,
2. HCO ₂ H, 60°, 1 h
MeO MeO N CO ₂ R MeO N (64) (60) (60) | ### C₃₆₋₄₂ ### C_{38} ОМе MeO QMe MeQ 424 OMe -CO₂i-Pr ОМе MeÓ MeÓ ОМе ÓМе A: 1. LiAlH(OBu-t)3, THF, 0°, 1 h (41) 2. HCO₂H, 60°, 1 h **B**: 1. LiAlH(OBu-t)₃, THF, 0°, 1 h (70) 2. MsCl, $\mathrm{Et_3N}$, $\mathrm{CH_2Cl_2}$, reflux , 20 h # Table 2. (Continued) | Table 2B. Unimolecular Reactio | | | | |--------------------------------|--|---|-----| | substrate | conditions | product(s) and yield(s) (%) | ref | | C ₁₁ | | <u> </u> | | | | | $\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$ | | | R NO | 1. Br ₂ , HOAc, 55-95° | R N O H (30) | 400 | | >NH | 2. SnCl ₄ , 0°, 2 h | NH CI (66) | | | //NII | | o NI | | | ŭ | | | | | | | NHCO₂Me | | | PhO NHCO₂Me | 1. DIBAL-H, CH ₂ Cl ₂ , –78°, 2 h | (76) | 625 | | Ţ | 2. BF ₃ •Et ₂ O, CH ₂ Cl ₂ , –78°, | (76) | 025 | | O | 40 min | | | | | | Q | | | | | NIIIOO M | | | Ph NHCO ₂ Me | 1. DIBAL-H, CH ₂ Cl ₂ , -78°, 2h | NHCO ₂ Me | | | V Y - | 2. TiCl ₄ , CH ₂ Cl ₂ , -78°, 4 h | (0) | 625 | | Ö | | | | | C ₁₂ | | ~ | | | 012 | | В | | | Ph | | $\frac{R}{H}$ (20) | | | N O | A : Br ₂ , HBr, AcOH, Ac ₂ O, | H (83) | 403 | | 71.70 | 60-70°, 84 h | 7,70 | | | | B : HBr, AcOH, Ac ₂ O, | NH Br (56) | | | o'' | 55°, 24 h; 70°, 24 h | '` oʻ | | | | | | | | 0 | | _ | | | Bh H ∐ | PPA, 135°, 2 h | N 0 (0) | 254 | | Ph N | FFA, 135 , 211 | (0) | 354 | |
 | | * \ | | | G | | | | | 0 | | | | | HN | | H N | | | HN—
NHCO₂Me | | | 377 | | NHCO ₂ Me | | | 386 | | \ <u>'</u> | | NHCO₂Me | | | R <u>R</u> | | NI ICO ₂ IVIE | | | H | A: TFA, rt, 72 h | (67) | | | | B: MsOH, toluene, 0°-rt, 24 h | (59) | | | CI | MsOH, 0°-rt, 24 h | (98) | | | | | ` ' | | | C ₁₃ | | | | | Ph | | | | | _ J | 1. NaBH₄, EtOH, H ⁺ | N (38) | 116 | | 0 N O | 2. PPA, 100°, 6 h | N O (38) | | | L J | 2.117, 100 , 011 | L J | | | ~ | | ~ | | | | | | | | R | DDA 4050 0 b | R | 354 | | HN | PPA, 135°, 2 h | N 0 H (71) | JJ4 | | | | | | | Ö | | CI (84) | | | | | | | | | | | | | H HN Ph | MsOH, 0°-rt, 24 h | NH (84) | 377 | | ! | WISO11, 0 -11, 24 II | (04) | | | MeO ₂ C N | | ⋄ ↑ ⋄ | 386 | | NHCO₂Me | | NHCO₂Me | | | | | Me M
e | | | Me | | Me Me | | | N O O | HCI, reflux, 10 min | N O N | 387 | | Ph OMe | Tiol, rollax, To Tilli | H + N-Me | 007 | | Me N OMe | | Me | | | | | HO HO | | | | | CI (60) (20) | | | | | | | | ы ŅНСО₂Ме | | н | | | . N | | N | | | NHCO ₂ Me | TFA, rt, 24 h | 0 (95) | 377 | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 386 | | , <u> </u> | | NHCO₂Me | | | | | | | | Ph.、 | 4 DIDAL II OU OL TOO | NHCO₂Me
∣ | | | | 1. DIBAL-H, CH ₂ Cl ₂ , –78°, 2 h | (38) | 625 | | NHCO ₂ Me | 2. TiCl ₄ , CH ₂ Cl ₂ , -78°, 2 h | (30) | 020 | | 0 | | | | | 3 | | | | Table 2. (Continued) | Table 2B | (Continued | (Ł | |----------|------------|----| | Table 2B (Continued) | | | | |---|---|---|------------| | substrate | conditions | product(s) and yield(s) (%) | ref | | C ₁₄ O COCI | $AICl_3,CH_2Cl_2,reflux$ | O N (49) | 337 | | MeO NO NO | THF, –78°, 6 h | MeO Bu N O | 291 | | | A: 1. BuLi (1.1 eq) 2. HCl (12 M) B: 1. BuLi (2.2 eq) 2. HCl (12 M) C: 1. BuLi (2.2 eq) 2. TFA, rt | (26)
(40)
(92) | | | | 1. RLi, THF, –78°, 6 h
2. TFA | MeO R N | 291 | | | CH_2Cl_2 , rt, 4 h
$CHCl_3$, reflux, 120 h
CH_2Cl_2 , reflux, 36 h
CH_2Cl_2 , reflux, 6 h | R Me (98) s-Bu (93) Ph (98) CH ₂ =CHCH ₂ (97) | | | Et Ph O N O | 1. NaBH ₄ , MsOH, EtOH
2. PPA, 100°, 6 h | (88), α:β = 39:61 | 114 | | MeO NeO | 1. BuLi, THF, -78°, 6 h
2. TFA, CH ₂ Cl ₂ ,
rt, overnight | MeO NO (93) | 291 | | Ph N Me MeO ₂ CHN O NHCO ₂ Me | MsOH, 0°-rt, 24 h | NHCO ₂ Me (98) | 377 | | Ph NH MeO ₂ CNH O NHCO ₂ Me | MsOH, 0°-rt, 6 h | NH (83)
NHCO ₂ Me | 377
386 | | Ph O NHCO ₂ Me | A : MsOH, 0°-rt, 72 h | MeO ₂ CNH | 377
386 | | R NH O | B: MsOH, toluene, 0°-rt, 24 h H ₂ SO ₄ , 5°-rt, 3.5 h | (67)
(76)
R N O R H (96) Br (91) | 408 | | N HCI
OMe | | N Bi (91) | | Table 2. (Continued) | T-1-1- 6 | AD /A | . 4 ! 4 \ | |----------|---------|-----------| | lable | ZB (Cor | ntinued) | | HO HO HO | O (89) | 3777
625
432
433 | |---|------------------------|---------------------------| | MeO ₂ CNH NHCO ₂ Me MeO ₂ CNH NHCO ₂ Me NHCO 1. DIBAL-H, CH ₂ Cl ₂ , -78°, 2 h 2. TiCl ₄ , CH ₂ Cl ₂ , -78°, 15 min MeO MeO 1. NaBH ₄ , CH ₂ Cl ₂ /MeOH, | O₂Me
(79) | 432 | | MeO 1. DIBAL-H, CH ₂ Cl ₂ , -78°, 2 h 2. TiCl ₄ , CH ₂ Cl ₂ , -78°, 15 min MeO MeO 1. NaBH ₄ , CH ₂ Cl ₂ /MeOH, | (79) | 432 | | MeO 1. DIBAL-H, CH ₂ Cl ₂ , -78°, 2 h 2. TiCl ₄ , CH ₂ Cl ₂ , -78°, 15 min MeO 1. NaBH ₄ , CH ₂ Cl ₂ /MeOH, MeO | | 432 | | 1. NaBH ₄ , CH ₂ Cl ₂ /MeOH, | O (89) | | | | 0 (89) | | | MeO 2. BF ₃ ·Et ₂ O, CH ₂ Cl ₂ , 0°-rt, 3 days MeO H | | | | C ₁₄₋₁₇ | | | | MeO | R/H (75)
⇒O Me (73) | 404 | | R | Et (75)
Pr (73) | | | C ₁₅ | | | | O N COCI | ₹ | 337 | | N N | | | | R $\frac{R}{2\text{-OMe}}$ SnCl ₄ , CH ₂ Cl ₂ , reflux (17) | | | | 3-OMe AICl ₃ , CH_2Cl_2 , reflux (23) | | | | 4-OMe AlCl ₃ , CH_2Cl_2 , reflux (38)
3-OMe TFA, TFAA, CH_2Cl_2 , reflux (37)
3-Me AlCl ₃ , CH_2Cl_2 , reflux (32) | | | | MeO 1. BuLi, THF, MeO 1. BuLi, THF, THF, CH ₂ Cl ₂ , rt, overnight MeO Bu | O ⁽⁹⁴⁾ | 291 | | MeO | | | | MeO O 1. BuLi, THF, -78°, 6 h 2. TFA, CH ₂ Cl ₂ , rt, overnight | ∑O (94)
S (95) | 291 | | MeO OH | `ОН | | | 1. NaBH ₄ , EtOH, 0°
2. HCl, EtOH, rt, 20 h | 91)
⊊O | 627 | | MeO 1. O ₃ , CH ₂ Cl ₂ , -78° MeO | (70) | | | MeO 2. Me ₂ S
3. HCO ₂ H, rt, 14 h MeO N | (70)
O | 404 | | MeO 1. O ₃ , CH ₂ Cl ₂ , -78° MeO 2. Me ₂ S | O (65) | 404 | | MeO HN 2. Me25 3. HCO₂H, rt, 14 h MeO N | > | | | MeO MeO | | | | HN N |) 0 | | | A: H ₃ PO ₄ , 100°, 1 h (82) B: HCl, THF, rt, 16 h (70) | , | 354
643 | Table 2. (Continued) | ied) | | | | |---|---|----------------------------------|------| | Table 2B (Continued) | | | | | substrate | conditions | product(s) and yield(s) (%) | ref | | MeO ₂ C O | | CO₂Me | | | Ph NHCO ₂ Me | MsOH, rt | NH (85) | 386 | | ii l | MSON, It | (00) | 300 | | [⊓] NHCO₂Me | | | | | | | NHCO₂Me | | | C ₁₆ | | - | | | A .0 | | \wedge \wedge \wedge | | | Ph | PPA, 100°, 24 h | (60) | 21 | | HN | FFA, 100 , 24 II | N (60) | | | | | | 23 | | 0 | | | | | | | CO Ma | | | CO ₂ Me | | CO₂Me | | | Pn T | H ₂ SO ₄ , 0°-rt, 72 h | NH (63) | 377 | | HN O | 112304, 0 -11, 12 11 | (63) | 311 | | | | Mac Child | | | MeO₂CNH´ NHCO₂Me | | MeO ₂ CNH | | | | | | | | MeO | 1. BuLi, TMSCI, THF | MeO | | | N O | –78°, 6 h | , N, ,o (-) | 291 | | MeO O | 2. TFA, CHCl ₃ , reflux | MeO Bu | | | - N | z. 1171, Orioig, rollax | N | | | \ Me | | Me | | | ✓ Me | | ,Me | | | Ph , | | | | | Me N O | MsOH, 0°-rt, 72 h | N—Me (70) | 377 | | IVIE | | | | | MeO ₂ CNH NHCO ₂ Me | | MeO ₂ CNH | | | | | - | | | MeO | | MeO | | | | TFA, 0°-rt, 48 h | NH (65) | 377 | | MeO HN O | ,, | MeO | 386 | | | | / `Ò
MeO₂CNH | 000 | | MeO ₂ CNH NHCO ₂ Me | | WEO2OWII | | | MeO. | | MeO、 🐟 🛆 | | | $\uparrow \uparrow \uparrow \uparrow$ | H ₂ SO ₄ , 5°-rt, 3.5 h | (93) | 408 | | MeO HN O | | MeO N O | | | | | WCO | | | MeO ,HCI | | N | | | OMe H | | Н | | | | | _ | | | o coci | | | | | in | AICl ₃ , CH ₂ Cl ₂ , reflux | O N OMe (62) | 337 | | N Ac | | | | | MeO | | , N, | | | | | Á _C ÓMe | | | | | | | |
OMe | | | | | | | <i>t-</i> Bu | | | <i>t</i> -Bu
 | | 1-5 u | | | Ph | PPA, 100°, 6 h | (74), α : β = 15:85 | 114 | | | , , | N - " | | | 0 / N / O | | H T > 0 | | | | | 🔾 | | | C ₁₇ O | | ^ ^ | | | // | | | | | NH
N | 1. Br ₂ , HOAc, 55-95° | N (90) | 400 | | Ph— | 2. SnCl ₄ , 0°, 2 h | Ph | | | Ph _ | | 0 | | | ,0 | | | | | /= HN | (Me ₂ SSMe) ⁺ BF ₄ -, | MeO | 345 | | MeO—〈 〉 〉 | CH ₂ Cl ₂ , reflux | N (76) | - 10 | | > s | 2Z2.Z, 1011dA | MeO | | | MeO S | | / | | | ~ | | | | | MeO | | MeO | | | HN 0 | Me ₂ SO ₄ , CH ₂ Cl ₂ , | N (46) | 345 | | MeO' ✓ ŞMe | reflux | MeO | | | SMe | | 11 | | | `SMe | | | | | | | | | # Table 2. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |--|---|---|-----------| | PhO NHCO₂Bn | 1. DIBAL-H, CH ₂ Cl ₂ , –78°, 2 h
2. BF ₃ •Et ₂ O, CH ₂ Cl ₂ , –78°,
40 min | NHCO ₂ Bn (86) | 625 | | MeO HN O MeS SMe | (Me₂SSMe) [†] BF₄ [*] ,
CH₂Cl₂, reflux | MeO NO (100) | 343 | | Ph H Ph | PPA, 100°, 50 min | N-0 (0) | 354 | | C ₁₈ N=N OPh | TiCl ₄ , CH ₂ Cl ₂ , rt, 72 h | O (72) | 644 | | NHCO ₂ Me | 1. DIBAL-H, CH ₂ Cl ₂ , -78°, 2 h
2. TiCl ₄ , CH ₂ Cl ₂ , -78°, 2 h | NHCO ₂ Me (84) | 625 | | N=N
N N
O | TiCl ₄ , rt, 48 h | R R R (81)
CI (67) | 644 | | NHCO₂Me
Ph O | 1. DIBAL-H, CH ₂ Cl ₂ , -78°, 2 h
2. TiCl ₄ , CH ₂ Cl ₂ , -78°, 1 h | CI (55) cis
(32) trans | 625 | | Ph H N Ph | PPA, 100°, 50 min | N (45) | 354 | | MeO O NO | 1. BuLi, THF,
–78°, 6 h
2. TFA, CH ₂ CI ₂ ,
rt, overnight | MeO N O (95) | 291 | | O Ph
N R
O R
Ph | 1. NaBH ₄ , MsOH, EtOH,
-5 to 0°
2. PPA, 100°, 6 h | R N | 45 | | $\begin{array}{c} C_6H_{11} \\ X \\ \hline X \\ \hline 4-F \\ 3-F \end{array}$ | PPA, 135°, 12 h
PPA, 130°, 12 h | (91), α:β = 12:88
X (46)
(40) | 114
66 | | MeO O N Me | 1. LiAIH(OBu- <i>t</i>) ₃ ,
THF, 0°, 1 h
2. HCO ₂ H, 70°, 40 min | <i>i</i> -PrO ₂ C H O (85) | 420 | | able | ۵. | L. (Continueu) | | | | |------|----|----------------|-------------|--|--| | | | Table 2R | (Continued) | | | | e d)
Table 2B (Continued) | | | | |---|---|-------------------------------------|------------| | substrate | conditions | product(s) and yield(s) (%) | ref | | MeO HN O CO ₂ Et | DIBAL-H, toluene,
-78°, 40 min HCO₂H, rt, 14 h | MeO H (63) | 368 | | MeO HN O CO ₂ Et | 1) O ₃ , CH ₂ Cl ₂ , –78°
2) Me ₂ S
3) HCO ₂ H, 14 h, rt | MeO $N \rightarrow O$ (45) CO_2Et | 404 | | MeO S | S (Me ₂ SSMe) [†] BF ₄ ⁻ . CH ₂ Cl ₂ , reflux | MeO (75) | 345 | | EtO ₂ C NH Me OMe
MeO OMe | HCI, MeCN | MeO N CO ₂ Et () | 4 9 | | MeO H N MeS | SMe Me ₂ SO ₄ , CH ₂ Cl ₂ , | MeO (71) | 345 | | MeO HN | PPA, 100°, 24 h | MeO (60) | 21
23 | | C ₁₈₋₁₉ | TiCl ₄ , toluene, reflux,
24 h | R | 645 | | C18-26 MeO HN O RS RS | (Me₂SSMe) [†] BF₄⁻,
CH₂Cl₂, rt | MeO NO NO | 345 | | <u>R</u>
Et
Ph | | (98)
(64) | | | C ₁₉ MeO NeO NeO | 1. BuLi
2. TFA | MeO Bu O (-) | 353 | | Ph
NHCO₂Bn | 1. DIBAL-H, CH ₂ Cl ₂ , –78°, 2 h
2. TiCl ₄ , CH ₂ Cl ₂ , –78°, 2 h | NHCO₂Bn (39) | 625 | | R S N N N N N N N N N N N N N N N N N N | TiCl ₄ , rt, 48 h | R' S R R' Me H (84) N H Me (80) | 644 | Table 2. (Continued) | Table 2B (Continued) substrate | conditions | product(s) and yield(s) (%) | re | |--|---|--|----| | ON N=N | TïCl ₄ , toluene, reflux, 24 h | OH H (40) | 64 | | MeO N | 1. BuLi, TMSCI,
THF, -78°, 8 h
2. TFA, CHCl ₃ , reflux | MeO Bu N O (90) | 25 | | Bn
Ph O
MeO ₂ CNH NHCO ₂ Me | MsOH, 0°-rt, 24 h | Bn
O
(98)
NHCO ₂ Me | 37 | | BuO ₂ CNH NHCO ₂ Bu | TFA, rt, 24 h | H
N
NHCO ₂ Bu | 37 | | X N O N O N O N O N O N O N O N O N O N | PPA, 132°, 12 h
PPA, 120°, 12 h | X————————————————————————————————————— | 6 | | C ₁₉₋₂₀ OMe | OMe TFA, reflux, 1.5 h | OMe
R | 4 | | C ₂₀ Ph NHPhth | TfOH, rt, overnight | NHPhth (57) | 3 | | MeO N O N S | 1. NaBH ₄ , CH ₂ Cl ₂ /MeOH,
-40° to -20°, 5 h
2. BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
0°-rt, 3 days | MeO H S (71) | 4 | | MeO O N N N | TiCl ₄ , toluene, reflux, 24 h | MeO (92) | 6 | | Ph CO ₂ Me N=N | TiCl₄, toluene, reflux, 24 h | H CO ₂ Me (83) | 6 | | Pho h | DIBAL-H, CH₂Cl₂, -78°, 2 BF₃•Et₂O, CH₂Cl₂, -78° | h HN 0- i-Pr (65), 0% de | 6: | Table 2. (Continued) | Table | 20 | (Continued) | |-------|----|-------------| | | | | | Table 2B (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|---|--|----------| | MeO H O Ph | H ₃ PO ₄ , 100°, 1 h | MeO Ph (82) | 354 | | MeO Ph O N O | 1. NaBH ₄ , MsOH,
EtOH, -5 to 0°
2. HCl, EtOH,
reflux, 30 min | MeO H N O (90), α:β = 90:10 | 45
67 | | MeO Ph HN O | 1. O ₃ , CH ₂ Cl ₂ , –78°
2. Me ₂ S
3. HCO ₂ H, rt, 14 h | MeO H N (75) | 404 | | Ph H Ph | TFA, reflux | O N (-) | 374 | | Bn N Bn MeO ₂ CNH O NHCO ₂ Me | MsOH, 0°-rt, 24 h | N Bn N | 377 | | S H O O | HCI, EtOH, rt, 6 days | S (31) | 66 | | MeO N-Bz | Ce(NH ₄) ₂ (NO ₃) ₆ ,
MeCN, rt | MeO N-Bz (7) | 330 | | MeO HN Et OH OH OH | 1. HIO ₄
2. H ₃ PO ₄ , reflux | MeO NO (-) | 34 | | Ph NH BuO ₂ CNH O NHCO ₂ Bu | МsОН, 0°-rt, 24 h | NH (63)
NHCO ₂ Bu | 377 | | HO HN O BuO ₂ CNH NHCO ₂ Bu | Cl ₂ CHCO ₂ H, 0°-rt, 48 h | HO NH (41) | 377 | | MeO HN Ets SEt | (Me ₂ SSMe) [*] BF ₄ ⁻ ,
CH ₂ Cl ₂ , reflux | MeO (78) | 345 | | C ₂₁ | TFA, reflux, 5 h | N (62) | 373 | # Table 2. (Continued) | Table 2B (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|---|--|-----| | x | | x x | | | ^ | 1. O ₃ , CH ₂ Cl ₂ , –78° | ~ ~ | | | MeO | 2. Me ₂ S | MeO | 404 | | HN O | 3. HCO ₂ H, rt, 14 h | N. 10 | | | MeO | | MeO H | | | <u>X</u>
2-OMe | ; | (73) | | | 4-Me | | (73) | | | Рh | | Рh | | | MeO | 1. DIBAL-H, toluene, | MeO | 222 | | HN O CO ₂ | –78°, 40 min
Et 2. HCO₂H, rt, 14 h | $ \begin{array}{cccc} & & & & \\ & & \\ & &$ | 368 | | MeO | 2. 1100211, 11, 1111 | MeO H | | | MeO. | | MeO、 | | | | $Ce(NH_4)_2(NO_3)_6$ | (60) | 330 | | MeO Bz | MeCN, rt | MeO N Bz | | | ΤMS | | | | | H Bn | 1. O ₃ , CH ₂ Cl ₂ , –78° | MeO | 404 | | MeO N N | 2. Me ₂ S | MeO (3) + | 404 | | MeO | 3. HCO ₂ H, rt, 14 h | Meo N | | | | | Bn | | | | | MeO (05) | | | | | MeO (65) | | | | | l v | | | MaO O | | `Bn | | | MeO | $Ce(NH_4)_2(NO_3)_6$, | MeO (50) | 330 | | MeO N Bn | MeCN, rt | MeO N Bn | 550 | | ⊤ms | | MeO · · · Bil | | | MeO CO ₂ Bn | | MeO | | | Ţ | $Ce(NH_4)_2(NO_3)_6$, | N-CO ₂ Bn (13) | 330 | | MeO TMS | MeCN, rt | MeO | | | ÇO ₂ Me | | ÇO ₂ Me | | | Ph NH | | NH | | | BuO ₂ CNH | MsOH, 0°-rt, 24 h | (63) | 377 | | NHCO₂Bu | | NHCO ₂ Bu | | | 141100 <u>2</u> 00 | | NI IOO2DU | | | н | | MeO | | | MeO N | PPA, 100°, 5 h | MeO (29) | 66 | | MeO | | | | | | | | | | Ph | T/A | | | | HN O | TfOH, CH ₂ Cl ₂ ,
reflux, 6 h | N O (85) | 409 | | MeO | 101MA, 0 11 | \setminus_{N} | | | MeO | | | | | | | | | | ~ | TIOU CU CU - | Ph | 400 | | | TfOH, CH ₂ Cl ₂ , rt | N = N (95) | 409 | | | | | | | | | | | | MeO | 4 N BH - 60 60 71 - 11 | MeO | | | | NaBH₄, CH₂Cl₂/MeOH, -40° to -20°, 5 h | Nac (92) | 432 | | MeO O | 2. BF ₃ •Et ₂ O, CH ₂ Cl ₂ , 0°-rt | MeO (92) | 433 | | Bn | 3 days | Bn | | | • | | | | Table 2. (Continued) | (Continued) | |-------------| | | | | | e d)
Table 2B (Continued) | | | | |---|---|------------------------------|-----| | substrate | conditions | product(s) and yield(s) (%) | ref | | Br O Bn Me | MsOH, MeNO ₂ , 60°, 16 h | N Me O (87) | 646 | | MeO N O N Me | 1. LiAlH ₄
2. BF ₃ •Et ₂ O | MeO NO (0) | 433 | | PhO Ph | 1. DIBAL-H, CH ₂ Cl ₂ , -78°, 2 h
A : 2. BF ₃ •Et ₂ O, CH ₂ Cl ₂ , -78°
B : 2. TiCl ₄ , CH ₂ Cl ₂ , -78° | (70), 40% de
(70), 11% de | 625 | | PhO N N N O | TiCl ₄ , CH ₂ Cl ₂ , rt, 48 h | O (89) | 644 | | R N N N O | TiCl ₄ , rt, 48 h | S R H (86)
CI (94) | 644 | | N H O Ph | PPA, 200°, 0.75 h | Ph (62) | 373 | | MeO HN O CO ₂ Et | 1. DIBAL-H, toluene,
-78°, 40 min
2. HCO ₂ H, rt, 14 h | MeO (15) | 368 | | OMe
OMe
MeO
HN
O | 1. O ₃ , CH ₂ Cl ₂ , –78°
2. Me ₂ S
3. HCO ₂ H, rt, 14 h | OMe
OMe
MeO
H (75) | 404 | | MeO HN O CO ₂ Et R 4-OMe 2-OMe | 1. DIBAL-H, toluene,
-78°, 40 min
2. HCO ₂ H, rt, 14 h | MeO H O (70) (65) | 368 | | 4-Me | | (70) | | Table 2. (Continued) | Table 2D | (Continued) | |----------|-------------| | IGNIE ZD | COMMINGE | | substrate |
conditions | product(s) and yield(s) (%) | ref | |---|---|-------------------------------|-----| | MeO N CO ₂ Bn | $Ce(NH_4)_2(NO_3)_6,$ MeCN, rt | MeO (60) | 330 | | MeO H Ets | SEt (Me ₂ SSMe) [†] BF ₄ ⁻ , CH ₂ Cl ₂ , reflux | MeO (71) | 345 | | C ₂₂₋₂₃ | TiCl ₄ , toluene, reflux, 24 h | R | 645 | | HO H N N N N N N N N N N N N N N N N N N | TiCl ₄ , toluene, reflux, 24 h | OH (60) | 645 | | Ph N N N N N N N N N N N N N N N N N N N | MsOH, MeNO ₂ , 60°, 16 h | N Me O (67) | 646 | | H OH H N=N | TiCl ₄ , toluene, reflux, 24 h | H (65) | 645 | | R'S
NNNNN | TiCl ₄ , rt, 48 h | R' S R R' Me H (96) H Me (91) | 644 | | O HN O H | HCI, MeOH | Bn N H | 639 | | O O Ph | PPA, 150-170°, 75 min | Ph (35) | 373 | | OMe
OMe
MeO
HN O CO ₂ I | 1. DIBAL-H, toluene,
-78° , 40 min
Et 2. HCO ₂ H, rt, 14 h | OMe
OMe
MeO (70) | 368 | Table 2B (Continued) | ied) Table 2B (Continued) | | | | |-----------------------------------|--|------------------------------|-----| | substrate | conditions | product(s) and yield(s) (%) | ref | | MeO | | | | | MeO N CO₂Bn | $\begin{array}{c} \text{Ce(NH}_4)_2 (\text{NO}_3)_6, \\ \text{MeCN, rt} \end{array}$ | MeO (71) CO ₂ Bn | 330 | | OEt O OEt O H | TfOH, CH ₂ Cl ₂ ,
reflux, 2 days | (73) | 409 | | | TfOH, CH ₂ Cl ₂ , rt | Ph N (91) | 409 | | C ₂₃₋₂₄ | | Ö | | | Ph O NH O Ph | PPA | NH NH | 608 | | X 3-F | 100°, 0.5 h | | | | 2-NO ₂ | 70°, 6 h | (70)
(60) | | | 4-NO ₂ | 25°, 72 h | (78) | | | 3-CF ₃ | 100°, 0.5 h | (62) | | | 2-Me | 40°, 6 h | (65) | | | 3-Me
C ₂₃₋₂₇ | 60°, 3 h | (72) | | | X | | х | | | O Bn Me | MsOH, MeNO ₂ , 60°,
16 h | N Me
O X N Me
O Bn | 646 | | <u>х</u>
н | | (75) (0) | | | 4-NO ₂ | | (72) (0) | | | 2-Br | | (79) (0) | | | 3-MeO | | (61) (11) | | | 3,4,5-(MeO) ₃ | | (9) (18) | | | C ₂₄ | | | | | MeO N=N | TiCl ₄ , toluene, reflux,
24 h | MeO (75) | 645 | | S N N N O | TiCl ₄ , rt, 4 8 h | S (81) | 644 | | N——Ph
OTs | KPPh ₂ , THF, 65-70°, overnight | (72) | 434 | | C ₂₅ Ph O NH O Ph H Ph | РРА | NH (81) | 608 | Table 2. (Continued) | (Continued) | |-------------| | | | | | Table 2B (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|--|---|----------| | MeO | | MeO. | | | HN O | HCI, MeOH | N (0 (89) | 639 | | MeO O N i-Pr | | MeO Bn i-Pr | | | AcO H
N
TMS | Ce(NH ₄) ₂ (NO ₃) ₆ ,
MeCN, rt | AcO H (64) | 330 | | C ₂₆ | O PPA, 100°, 14 h | N O (27) | 66 | | PhO Ph | 1. DIBAL-H, CH ₂ Cl ₂ ,
-78°, 2 h
2. BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
-78° | O- (73), 25% de | 625 | | MeO O CO ₂ M | fle 1. Ac ₂ O, TsOH
2. TsOH, reflux | MeO (65-70) | 85
87 | | C ₂₇ Ph O NH O Ph | PPA | NH | 608 | | H
2-NO ₂
4-NO ₂
MeO NO S | 45°, 3 h
80°, 5 h
40°, 3.5 h
1. NaBH ₄ , CH ₂ Cl ₂ /MeOH,
-40° to -20°, 5 h
2. BF ₃ •Et ₂ O, CH ₂ Cl ₂ , 0°-rt
3 days | (63) X
(55)
(77)
MeO N O (98)
Bn Bn (98) | 433 | | C ₂₉ BnO, N ₃ OMe NHTs | TFA, H ₂ O, 70° | $\begin{array}{c} Br \\ \hline \\ N_3 \end{array} OH \qquad (88)$ | 418 | | Ph i-Pr O NH O Ph H i-Pr X x | РРА | i-Pr
NH | 608 | | X <u>X</u>
H
4-NO ₂ | 40°, 3 h
40°, 8 h | (46)
(46) | | Table 2. (Continued) Table 2B (Continued) | Table 2B (Continued) | | | | |---|---|--|-----| | substrate | conditions | product(s) and yield(s) (%) | ref | | MeO HN O Bn N Bn | HCI, MeOH | MeO N Bn (92)' | 639 | | C ₃₂ | | MeO. | | | MeO O O O O O O O O O O O O O O O O O O | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , reflux | OH
MeO (36), 99% ee | 647 | | C ₃₅ MeO OTBDPS MeO Bu | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
reflux | MeO OH NO (34), 99% ee | 647 | | C ₄₀ | | | | | MeO OMe OMe OMe | 1. LiAl(OEt) ₂ H ₂ ,
THF, 0°, 1.5 h
2. TFA, reflux, 36 h | MeO H OMe MeO H OMe N-Bn MeO H (73) | 426 | | OTBDMS MeO HO TBDMSO allylO ₂ C N H O H | 1. KF, MeOH,
rt, 0.5 h
2. TfOH, CF ₃ CH ₂ OH
H ₂ O, 45°, 7 h | OMe
HO OH
H H H
AllylO ₂ C - N
H OH
(87) | 425 | | C ₄₃ OMe TBDMSO OTBDMS allylO ₂ C-NH H CN H O | 1. DIBAL-H, –78°
2. KF•2H ₂ O
3. MsOH, MS | OMe
HO OH
OH
AllyIO ₂ C-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | 417 | | C ₄₅ OTBDMS O OMe MeO Cbz N NH OMe OMe OBn | 1. NaBH ₄ , AcOH,
EtOH, -25°
2. HCO ₂ H, rt
3. Bu ₄ NF, THF, rt | OMe
HO
OMe
HN
HO
OBn
(75) | 413 | ^a An unsaturated cyclized product (5%) was also formed. ^b The compound was a 10:1 mixture of diastereomers. ^c No yields were reported; just product ratios. ^d The compound was a mixture of diastereomers. ^e The compound was a 5:2:1:1 mixture of diastereomers. ^f The compound was a 6:2:3:8 mixture of diastereomers. ^g The compound was a 5.1:4.9 mixture of diastereomers. ^h The compound was a 2:1 mixture of diastereomers. ^f The compound was a 4:1 mixture of diastereomers. ^k The compound was a 92:8 mixture of diastereomers. ^f The compound was a 89:11 mixture of diastereomers. diastereomers. **Table 3. Unimolecular Reactions with Furans and Thiophenes** | | substrate | conditions | product(s) and yield(s) (%) | ref | |-------------------|-------------------------|---|-----------------------------|-----| | C ₉₋₁₀ | HO NO | HCO₂H, rt, 14 h | S | 120 | | C ₁₀ | S S O N HO | HCO ₂ H, 25°, 14 h | S (38) | 440 | | | S O N HO | HCO₂H, 25°, 14 h | S (44) | 440 | | | S
HO NO | HCO₂H, 25° | S (50-55) | 440 | | | HO | HCO ₂ H, C ₆ H ₁₂ ,
3 min | (70) | 436 | | | O HO N O | HCO ₂ H, C ₆ H ₁₂ ,
3 min | (66) | 436 | | | S
N
N
S | TFA, reflux, 3 h | N (67) | 441 | | | S-HO-N-O | HCO₂H, 25° | S N (74) | 442 | | C ₁₁ | SHO NO F ₃ C | TFA, 1.5 days | S N O (777) | 358 | | | SNYO | TfOH, CH₂Cl₂, 1 days
HCO₂H, 25° | (33)
S
N
O (50-55) | 440 | | | S HN O | H ₃ PO ₄ (85%), 100°,
40 min | S (68) | 354 | | | S
HO NO | HCO₂H, rt | S
N O (50-55) | 440 | | | HO NO | HCO ₂ H, rt, 14 h | S (63) | 119 | Table 3. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |---------------------------|---|-----------------------------|-----| | HO | HCO ₂ H, C ₆ H ₁₂ ,
3 min | (71) | 436 | | HONO | HCO ₂ H, C ₆ H ₁₂ ,
3 min | O (71) | 436 | | HONO | HCO_2H , C_6H_{12} . 3 min | N (50) | 436 | | HO | MsCl, CH₂Cl₂, rt | N (81) | 436 | | | HCO ₂ H, C ₆ H ₁₂ ,
3 min | O (75) | 436 | | O HO N O | HCO ₂ H, C ₆ H ₁₂ ,
3 min | N (87) | 436 | | S N S | HCO₂H, 60°, 14 h | (63)
S | 442 | | S N O | HCO₂H, 60°, 14 h | S (70) | 442 | | C ₁₂ S HO N Ac | HCl, 0°, 18 h | S
N
N
O (87) | 438 | | S-HO-N-O | HCO₂H, 60°, 14 h | S N (68) | 442 | | S N S | HCO ₂ H, 60°, 14 h | S (60) | 442 | | S N NH | TFA, reflux, 3 h | (65)
N
N
H | 441 | | HONO | HCO ₂ H, C ₆ H ₁₂ ,
3 min | O (64) | 436 | Table 3. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |---|---|-----------------------------|-----| | HO | HCO ₂ H, C ₆ H ₁₂ ,
3 min | 0 (67) | 436 | | O HO N O | HCO ₂ H, C ₆ H ₁₂ .
3 min | N O (48) | 436 | | HO | HCO ₂ H, C ₆ H ₁₂ ,
3 min | (55) | 436 | | C ₁₂₋₁₃ R S N N N N N N N N N N N N | HCO₂H, 60°, 14 h | R S N OCHO Me (55) | 442 | | C ₁₃ O | | SIN O | 370 | | R
CI
OH | SnCl ₄
TFA, rt, overnight | (—)
(58) | | | SHONO | TFA, rt, overnight | S N (64) | 443 | | S S NO NO | TFA, rt, overnight | S S N (72) | 443 | | HOWN O | HCO ₂ H, rt, 14 h | S (68) | 119 | | C ₁₄ S HO N O | SOCI ₂ , CH ₂ CI ₂ ,
rt, 2 h | S (100) | 370 | | S O | 1. NaBH ₄ , MsOH, EtOH,
-5 to 0°
2. HCl, EtOH,
reflux, 30 min | S (83) | 115 | | s
N
N | 1. DIBAL-H
2. TFA, reflux, 3 h | S (65) | 441 | # Table 3. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |------------------------------|---|-----------------------------|-----| | S N O NH | HCO₂H, rt, 14 h | S N O (65) | 406 | | S HO NH | HCO₂H, rt, 14 h | S N O (60) | 406 | | Et OH
HN | HCO₂H | Et (72) | 435 | | R S HO N O | SOCI ₂ , CH ₂ CI ₂ ,
rt, 2 h | R N O R H (100)
Cl (92) | 370 | | S NH NH | HCO ₂ H, 60°, 1 4 h | S N (55) | 442 | | S Ph O HO | TFA, CH ₂ Cl ₂ ,
rt, 24 h | (80) | 369 | | S—EtO | TiCl ₄ | (S) (-) | 370 | | HONOS | MsOH, rt, 2 h | (31) | 630 | | N O | MsOH, CH ₂ Cl ₂ , reflux | (80) | 631 | | C ₁₆ R SHO N O Et | SOCI ₂ , CH ₂ CI ₂ , rt, 2 h | R S N O R H (81)
CI (75) | 370 | | S
O
N
O | 1. NaBH ₄ , MsOH, EtOH,
-5 to 0°
2. HCl, EtOH,
reflux, 30 min | Ph § (60), α:β = 96:4 | 45 | Table 3. (Continued) | icu) | substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------|---------------|--
---|-----| | но— | s o | MsOH, CH ₂ Cl ₂ , reflux | (99) | 631 | | | OH OH | TFA, CH ₂ Cl ₂ , rt
TsOH, toluene, reflux | (75)
(73) | 648 | | | S
OH | TFA, CH ₂ Cl ₂ , rt | S (19) | 648 | | ı | | TsOH, toluene, reflux | (70) | | | | O Ph | 1. DIBAL-H, toluene,
-78°, 1 h
2. HCO ₂ H, rt, 14 h | H (80) | 121 | | ⟨ ^S ⟩ | Ph
HN Ph | H ₃ PO ₄ (85%), 100°,
40 min | S N (52) | 354 | | C ₁₆₋₁₇ | 0 | | | | | R | HO | HCO ₂ H, C ₆ H ₁₂ ,
3 min | R I II CF ₃ (30) (34) H (28) (51) OMe (20) (62) | 436 | | C ₁₇ | | | | | | Z. | O N O Ph | 1. DIBAL-H, toluene,
-78°, 1 h
2. HCO₂H, rt, 14 h | N (80) | 121 | | Br | N O N O HO Bu | TsOH, toluene, reflux | $Br \longrightarrow S$ Bu (0) | 444 | | S
HO | N O R | HCl, 0°, 18 h | $ \begin{array}{c cccc} S & & & & & \\ N \\ N & \\ N & \\ N & & & & \\ N & \\ N & & & & \\ N & \\ N & & & & \\ N & & & & & \\ N \\ N & \\$ | 438 | | | | | | | # Table 3. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |------------------------|--|--|-----| | OH O | TsOH, toluene, reflux | (55) | 500 | | 0— но | | | | | N O CO ₂ Et | PPE, 50°, 2 h | N (85)
CO₂Et | 80 | | S
HO N
N | HCO₂H, rt | \$ (-) | 440 | | | | | | | S
O
N
O
Ph | 1. DIBAL-H, toluene,
-78°, 1 h
2. HCO ₂ H, rt, 14 h | S
N
N
N
N
(8) | 121 | | C ₁₇₋₁₈ | $HCO_2H,C_6H_{12},3$ min | R-(N) 0 1 + | 436 | | | | N O II | | | | | R I II CF ₃ (23) (50) H (10) (51) OMe (5) (50) | | | C ₁₈ | HCl, 0°, 18 h | S (76) | 438 | | O Pr | | Pr | | | S—HO | TFA, CH ₂ CI ₂ ,
rt, 24 h | (85) | 369 | | S PhHO | TFA, CH ₂ Cl ₂ ,
rt, 24 h | (88) | 369 | Table 3. (Continued) | ued) | | | - | |---------------------------|---|--|-----| | Substrate C ₂₀ | conditions | product(s) and yield(s) (%) O O | ref | | TIPSOOOH | | H + OH | 437 | | O | TFAA, <i>i</i> -Pr ₂ NEt, MeCN
ZnCl ₂ , CH ₂ Cl ₂ , rt
ZnCl ₂ , MeCN, rt
BF ₃ *Et ₂ O, MeCN, rt
Et ₂ AICI, MeCN, 0°
Et ₂ AICI, MeCN, rt
Et ₂ AICI, MeCN, 40°
Et ₂ AICI, MeCN, 40°
Et ₂ AICI, CH ₂ Cl ₂ , rt
Et ₂ AICI, THF, rt
LICIO ₄ (3.0 M), Et ₂ O, rt | (65) (15) (56) (6) (41) (10) (55) (9) (64) (8) (71) (10) (71) (12) (64) (13) (45) (5) (5) (8) (49) (4) | | | S HO N O | SOCI ₂ , CH ₂ CI ₂ ,
rt, 2 h | S Ph N (96) | 370 | | R S NO Ph | SOCI ₂ , CH ₂ CI ₂ ,
rt, 2 h | R | 370 | | Et OH N Et | TsOH, toluene, reflux | Et (62) ^a | 500 | | C ₂₁ TIPSO HO | LiClO₄ (2 M), Et₂O | (55) + | 437 | | TIPSO O HO N | | + + H | 437 | | | TFAA, <i>i</i> -Pr ₂ NEt, MeCN
BF ₃ *Et ₂ O, MeCN, rt
Et ₂ AICI, MeCN, rt
LiCIO ₄ (3.0 M), Et ₂ O, rt
LiCIO ₄ (2.5 M), Et ₂ O, rt | (25) (17) (33) (25) (32) (21) (31) (16) (21) (11) | | | | TFA, rt | S N (98) | 439 | Table 3. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |-----------------------------------|------------|-----------------------------|-----| | | TFA, rt | (98)
S H | 439 | | S N HO N O | TFA, rt | R H (99)
Me (96) | 439 | | S HO N O R S a mixture of isomers | TFA, rt | N H (99)
Me (92) | 439 | ^a The product was a mixture of isomers. **Table 4. Unimolecular Reactions with Nitrogen-Containing Heterocycles** | | substrate | conditions | product(s) and yield(s) (%) | ref | |-----------------|---------------------------------------|--|---|-----| | C ₁₂ | Me
N | | Me
N | | | | HO N O F ₃ C | TfOH, CH ₂ Cl ₂ , 2 days | N (73) | 358 | | | MeO N N O | TsOH, C ₆ H ₆ , reflux | MeO N (20) | 450 | | C ₁₃ | N N N | HCO₂H, rt, 3 days | (27) | 445 | | C ₁₄ | OH
N
H | HCI, 30° | N Q (quant.) | 470 | | | N N N N N N N N N N N N N N N N N N N | 1. NaBH₄, H ⁺
2. HCl, reflux | N O (78) | 469 | | C ₁₅ | OH
N
N
H | нсі | N O (>95) | 470 | | | N N N O | АсОН | (-)
N
H
C ₆ H ₁₃ | 448 | | | HOO | 1. NaBH₄, EtOH
2. HCl, 0°, 20 h | OH
N H (45) ^a | 622 | Table 4. (Continued) | ıed) | | | | |---|--|---------------------------------------|-----| | substrate | conditions | product(s) and yield(s) (%) | ref | | HO CF ₃ | TFA, 8 h
TFA, CH $_2$ Cl $_2$, 4 days
TfOH, CH $_2$ Cl $_2$, 1 day | (57)
(91)
(77) | 358 | | O N N N N N N N N N N N N N N N N N N N | 1. NaBH₄, H ⁺
2. HCl, reflux | N (56) | 469 | | NH
N
N
O | HCI, MeOH, 60°, 4 h | N (87) | 354 | | C ₁₆ O | TsOH, CH ₂ Cl ₂ , reflux | N (79) | 320 | | MeO N HO | TsOH, C ₆ H ₆ , reflux | MeO N (53) + | 450 | | T N N N N N N N N N N N N N N N N N N N | 1. NaBH ₄ , EtOH, 0°, 5 h
2. HCl, EtOH, rt, 20 h | (15)
NOME (15) (73) + NOME (73) + | 468 | | O NHMe
O N
HO O | TFA or HCI, $CHCI_3$ or CH_2CI_2 , rt | HO N (quant.) N Me Me | 481 | | N N N N N N N N N N N N N N N N N N N | TiCl ₄ , CH ₂ Cl ₂ , –78° to rt,
20 h | OH
O (54) ^b | 622 | | C ₁₆₋₁₈ RO NeO N | TsOH, C_6H_6 , reflux | MeO N R H (70) Et (55) | 450 | | C ₁₇ OH | TFA, reflux, 3 h | N (64) | 355 | # Table 4. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |-------------------------------|--|--|------------| | N H OH | AcOH (20%), toluene reflux, 48 h | N H OH HO | 461 | | Me Ph | 1. NaBH ₄ , MsOH, EtOH, 0°
2. MsOH, rt | Me Ph (50), α : β = 74:26 | 45
115 | | C ₁₈ N HN O Me OMe | HCI, THF, rt-reflux | O (80) | 447 | | N OH | | | 446 | | | $SOCl_2$, CH_2Cl_2 , rt, 0.5 h
TFA, CH_2Cl_2 , rt, 1 h | (35)
(28) | | | N H H | 1. NaBH ₄ , H [*]
2. HCl, reflux | N O (90) | 469 | | N H | 1. NaBH₄, H ⁺
2. HCl, reflux | N H H (69) | 469 | | OH
N
H | HCl, 30°, 30 min
or HCl, reflux | N (quant.) | 469
470 | | N CO ₂ H | AcOH, reflux,
24 h | O (60), $\alpha:\beta = 1:2$ Et' | 93 | | N HO N | HCI (conc.), 40°, 1 h | N H $(74), \alpha:\beta = 4:3$ | 472 | | N O OMe | TsOH or KHSO ₄ (cat.)
165-175° | (70) + | 609 | | | | (small amt.) | | Table 4. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |----------------------------------|---|-----------------------------|-----| | C ₁₉ O | 1. NaBH₄, H ⁺
2. HCl, MeOH, reflux | N (86) | 467 | | O OH | SOCI ₂ , CH ₂ CI ₂ , rt, 0.5 h | (98) | 446 | | | TFA, CH ₂ Cl ₂ , rt, 1 h | (94) | | | N
N
H O CO ₂ Me | PPA, 20 torr, 100°, 3 h | O N H CO ₂ Me | 110 | | N HO | HCl, MeOH, reflux, 24 h | N (85) | 463 | | HN—Et CHO | AcOH, CHCl₃, rt | N
H
CHO | 113 | | | AcOH, NaOAc, H ₂ O,
heat | N (-) | 91 | | N H HO OH | 1. HIO ₄ , AcOH, NaOAc
2. HCl, 60°, 0.5 h | N H H OHC (69) | 111 | | N OHC Et | TFA, CH ₂ Cl ₂ , –55°,
10 h | H N O (88) + | 100 | | | | H N O (5) | | | N Et HO | 1. AcOH, reflux, 48 h
2. NaOH, MeOH, rt, 0.5 h | H N O (65) | 100 | Table 4. (Continued) | ed) substrate | conditions | product(s) and viold(s) (0/) | ref | |---
---|-------------------------------|------------| | Substrate | conditions | product(s) and yield(s) (%) O | ref | | NH OEt OEt | HCO₂H, Na₂CO₃,
H₂O, 100°, 1 h | (78) | 113 | | C ₂₀ O | HCl, EtOH, reflux, 24 h | N N (80) | 463 | | HO Et | | N Et | 446 | | | $SOCl_2$, CH_2Cl_2 , rt, 0.5 h
TFA, CH_2Cl_2 , rt, 1 h | (35)
(28) | | | Ph
N
N
H | 1. NaBH ₄ , MsOH, EtOH, 0°
2. MsOH, rt | Ph
N H (70), α:β = 92:8 | 45
115 | | N O O O O O O O O O O O O O O O O O O O | SOCl ₂ , CH ₂ Cl ₂ , rt, 0.5 h
TFA, CH ₂ Cl ₂ , rt, 1 h | (100)
(92) | 446 | | HO NO Ph | HCO₂H, reflux | O
N
N
Ph | 381 | | H CO ₂ | AcOH, toluene, reflux, 48 h | (90), α;β = 7:3 | 103 | | C ₂₁ OH | DMSO, 10 days
AlCl ₃ , THF, 0°, 1 h | (11)
(87) | 635 | | O H N N N N N N N N N N N N N N N N N N | TFA, 70°, 2 h | NH
O (89) | 482
649 | Table 4. (Continued) | ued) | | | | |-------------------------------------|---|----------------------------------|----------------| | substrate | conditions | product(s) and yield(s) (%) | ref | | | | | | | N Et | | | 446 | | но | | N | | | N | | Et (| | | | SOCl ₂ , CH ₂ Cl ₂ , rt, 0.5 h | (100) | | | 0 | TFA, CH ₂ Cl ₂ , rt, 1 h | (93) | | | | | | | | N N | | N-Q ⁰ | | | N HO | | | 446 | | | 2001 CH CI + 0.5 h | (100) | | | | $SOCl_2$, CH_2Cl_2 , rt, 0.5 h
TFA, CH_2Cl_2 , rt, 1 h | (94) | | | 0 | | | | | N | NaBH ₄ , MsOH, EtOH, | N (67) | 476 | | O N Bz | –5°, 4 h | N H | | | H H | | \
Bz | | | | | | | | HN Ph | HCI, MeOH, 45°, 48 h | N (79) | 463 | | N Ö | | N
H Ph | | | 0 | | | | | N H | TEA OU OL # 45 h | H | 0.5 | | | TFA, CH ₂ Cl ₂ , rt, 15 h | N | 95 | | N MeO CHO O | | Et OMe | | | 0110 | | (77), α : β = 1.6:1 | | | | | , 0 | | | HO— | | N | | | | HCO ₂ H, reflux | | 381 | | Ph | | Ph | | | N
H | | H | | | 20.11 | | Bz CO ₂ Me | | | H _{con} CO ₂ Me | | N-\Solino | | | N_OMe | Ac ₂ O-AcOH, 80° | | 446 | | N Bz | | | | | Me <u>Isomer</u> | | √ ¬N
Me | | | E
Z | | (87)
(89) | | | 0 | | (65) | | | HN | | N | | | H) | 1. NaIO ₄ , acetone, H ₂ O,
60-70°, 20 s | N H H (60)° | 89 | | HO HO OH | 2. H ₃ PO ₄ , 60-70°, | HH | | | HO ^v HOH | 20 min | H | | | | | HO | | | C ₂₂ HO _ | | | | | N Et | | | 446 | | | | N NO | 1 0 | | , O, | | | | | | | Et' | | | | SOCI ₂ , CH ₂ CI ₂ , rt, 0.5 h | (100) | | | | TFA, CH ₂ Cl ₂ , rt, 1 h | (92) | | Table 4. (Continued) | ıed) | | | | |--|--|--|-----| | substrate CO ₂ Me | conditions | product(s) and yield(s) (%) | ref | | OMe
Bz | Ac ₂ O, AcOH | N-Bz | 383 | | Me Et | 120°
DMSO, 150° | (92)
(90) | | | O N OH CO ₂ Me | AcOH, reflux, 20 h | N H $\dot{\beta}$ γ | 446 | | N
H
C ₂₃ HO Ph
N
N | TFA, reflux, 3.5 h | MeO ₂ C′ (58) | 446 | | O
NHCO ₂ Bn | 1. NaBH ₄ , EtOH,
2. TFA, CH ₂ Cl ₂ ,
rt, 3 h | H O (71) , $\alpha:\beta=9:1$ | 471 | | O NHMe
N OBn
O Me | TFA or HCl, CHCl ₃ or CH ₂ Cl ₂ , rt | BnO N Me (76) | 481 | | N HO NHCO ₂ Bn | BF _{3*} Et ₂ O, MeCN,
-78 to 10°, 5 h | N H H BnO ₂ CHN (66) | 397 | | N Eto N Bz | TaOH, C_6H_6 , reflux, 3 h | N (56) | 476 | | OH CO ₂ Me N H Et I:II = 7:1 OCO ₂ Me I + CO ₂ Me I + III = 7:1 | AcOH, reflux, 20 h | MeO ₂ C Et (96), $\alpha/\beta = 1:1$ | 93 | | CO ₂ Wie NAC | BF ₃ •Et ₂ O, 90°, 16 min | Ac (89) + | 108 | | | | Ta N-Ac (2) | | # Table 4. (Continued) | ed) | | | | |---|--|--|------------| | substrate | conditions | product(s) and yield(s) (%) O | ref | | HO N N N Ph H | HCO₂H, reflux | N (60) | 381 | | H CO ₂ Et OH | HCl, CH₂Cl₂ | H CO ₂ Et O (77) | 635 | | EtO ₂₄ , OAc | 1. HCO ₂ H, reflux
2. AcCl, EtOH, rt | HO H (67) | 381 | | C ₂₅ | AcOH, toluene, reflux, 48 h | N (90) N H H OH HO O ₂ N | 461 | | MeO HO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
–78 to 10°, 5 h | MeO N H N O (94) BnO ₂ CNH | 397 | | C ₂₆ OAc EtO OAC Ph | 1. HCO ₂ H, reflux
2. AcCl, EtOH, rt | HO H | 381 | | C ₂₇ O S(O)Et CO ₂ Me | ТsОН, С _б Н _б , reflux | Bn O SEt (80) CO ₂ Me | 344 | | N PhS | BF ₃ *2AcOH, CH ₂ Cl ₂ ,
25° | N ("excellent") Bn | 343
346 | | C ₂₈ O | BF ₃ *2AcOH, CH ₂ Cl ₂ ,
25° | N O ("excellent") Bn | 343
346 | ### **Table 4. (Continued)** | ued) | | | | |--|---
---|------------| | substrate | conditions | product(s) and yield(s) (%) | ref | | N H CO₂Et | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 6 h | OH (60) | 86 | | N_CO ₂ Bn
TMS
SO ₂ Ph | Ce(NH ₄) ₂ (NO ₃) ₆ ,
MeCN, rt | N-CO ₂ Bn (86)
SO ₂ Ph | 330 | | EtS O CO ₂ Me | (Me ₂ SSMe) [†] BF ₄ ⁻ | CO_2Me N CO_2Me CO_2M | 344 | | CO ₂ Bn TMS SO ₂ Ph | Ce(NH ₄) ₂ (NO ₃) ₆ ,
MeCN, rt | N CO_2Bn SO_2Ph N | 330 | | C ₃₁ Ph O O N N H N N H N H N H N H N H N H N H | HCI, MeOH | N Ph CO ₂ Me | 463 | | C ₃₅ O N OH OSiPhMe ₂ | | Me ₂ PhSiO Et | | | OSiPhMe ₂ N H Et CHO II I + II = 1.7:1 | Nafion-H, toluene,
rt, 18 h
TFA, CH ₂ Cl ₂ , -42° t
16 h | (95), $\alpha:\beta$ = 1:2 ort, (95), $\alpha:\beta$ = 1:3 | 101
650 | | AC, NH H O N OEt | HCO₂H, 60° | Bn N H N O (63) | 543 | a The product was a 9:1 mixture of diastereomers. b The product was a 5:2 mixture of diastereomers. c Other isomers were detected by NMR. d TentaGel-OH resin (black circle) was used for the solid-phase reaction. Table 5. Unimole | substrate | conditions | roxy/Alkoxy/Thioalkoxy/Acyloxy/Halo Amides
product(s) and yield(s) (%) | ref | |---------------------------------|---|---|------| | 7-9 R | | | | | s—⊢R | | ь Рн | | | | HCO₂H, rt | R , OCHO | | | O, M, OH | | $S \setminus A = 3:1$ | | | | | | | | R | | 0 | | | H | 18 h | (80) | 124 | | Н | 142 h | (82) | 429 | | Me | 2 h | (80) | 124 | | Me | 2 h | (92) | 429 | | | | • | | | ÒН | | H OCHO | | | \dashv , | UCO II + 19 h | (85), $\alpha:\beta = 5:2$ | 429 | | N-/ | HCO ₂ H, rt, 18 h | S N (05), a.p = 5.2 | 428 | | ľ \ | | | | |) | | 0 | | | | | | | | | | | | | ^ | UCO II # 24 h | EtO ₂ C—N —OCHO (>95) | 161 | | 1∕_OH | HCO ₂ H, rt, 24 h | EtO ₂ C-N OCHO (>95) | 101 | | O ₂ Et | | | | | | | | | | | | | | | \ 5 | | R | | | o-R | | √ ^ <0 p | | | \mathcal{A} λ . | | _/ | | | N OH | TiCl ₄ , CH ₂ Cl ₂ , reflux, 2 h | O N H (58) | 170 | | | | // We (65) | | | - ~ | | - | | | | | | | | | | Ĥ | | | NOH | | осно | | | N OH | HCO ₂ H, rt, 18 h | $\langle N \rangle$ (55), $\alpha:\beta = 5:1$ | 154 | | | | | 156 | | OMe | | 0 | | | | | | | | - 1 | 0 | HCO | | | 5— | 1100 11 00° 04 b | H OCHO (50) 0:0 = 3:1 | 640 | | N | HCO ₂ H, 60°, 24 h | OCHO (50), $\alpha:\beta = 2:1$ | 610 | | Î H | | Ň | | | | | 0 | | | | | - | | | _ | | \\ | | | | | }—Cι | | | N OH | PPA, rt, 50 min | (19) + (19) | 499 | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | ČI | | 7 | | | - | | 0 0 | | | OH // | | ų, | | | \prec \prec | 1100 11 -4 40 5 | \$ (55) | | | N—\ | HCO ₂ H, rt, 16 h | OCHO (55) | 610 | | $\overline{}$ | | \downarrow | | | Ö' | | 0 | | | | | 00110 | | | ್ಷ-Et | | о́сно осно | | | /w. | UCO II + 24 h | Et Et Vv | 161 | | ∕он | HCO ₂ H, rt, 24 h | + | 161 | | | | N N | | | O ₂ Me | | CO₂Me CO₂Me | | | somer | | Ια:Ιβ:ΙΙ | | | • | | 88:4:8 | | | • | | 18:73:9 | | | | | | | | | | | | | | | , H H | | | H | 1100 11 4 | осно | 4 40 | | ^N √ _{v~} OH | HCO ₂ H, rt, overnight | \times \uparrow \uparrow | 142 | | | | H (quant.), $\alpha:\beta = 9:1$ | | | \ /\\ | | | | Table 5. (Continued) | (Continued) | |-------------| | | | | | Table 5A (Continued) | | | | |----------------------|--|---|-----| | substrate | conditions | product(s) and yield(s) (%) | ref | | O N OH | HCO ₂ H, rt, 1 h; saponified | OH (70) | 159 | | HNOH | HCO₂H, CH₂Cl₂, reflux,
24 h | HN N (49) | 520 | | OEt Br | HF, 0°, 3 h | F
Br (35) | 506 | | | TfOH, CH ₂ Cl ₂ , rt, 15-17 h | Br (48.5) | 506 | | | TFA, rt, 16-24 h | O (47) | 506 | | O N OH | | H OH II + OH IV OH OH | 159 | | | TFA, 22°, 1.5 h; saponified HCO ₂ H, AcOH, rt, 5 days; saponified | <u>I</u> <u>II-IV</u> (0) (—) (31) (69) | | | O NOEt | HCO₂H, rt, 1 h | α (<10); β (>90) | 124 | | | DCO ₂ D, rt, 1 h | OCDO (80) monodeutero | 124 | | OH N | HCO₂H, rt, 30 min | -OCHO + OCHO (42.5) | 136 | | N OMe | TiCl ₄ , CH ₂ Cl ₂ , –78° to rt,
33 h | H CI (80) | 493 | | O N TOH | HCO ₂ H, rt, 18 h | OCHO (81), $\alpha:\beta = 86:14$ | 137 | Table 5. (Continued) | Table EA. | (Continued) | |-----------|-------------| | I avic sa | CONTINUEDI | | substrate | conditions | product(s) and yield(s) (%) | ref | |--|--|--|--------------------| | | | OCHO | | | O N H | HCO₂H, rt, 4 days | (43), $\alpha:\beta = 1:4$ | 509 | | ОМОН | HCO₂H, rt, 5 min | OCHO (quant.) | 15 4
156 | | O N OH Me | HCO₂H, 18 h | OCHO (quant.) | 133 | | S OH | HCO ₂ H, rt, 118 h | OCHO (76), $\alpha:\beta = 3:1$ | 429 | | MeO N CO ₂ Me | TiCl ₄ , CH ₂ Cl ₂ , rt | CO ₂ Me (89) | 511 | | MeQ OMe | HCO₂H, rt, 18 h Me | MeO H OCHO + MeO H OCHO (quant.), I:II = 2:1 | 138 | | OH
N CO ₂ Me
CO ₂ Me | HCO₂H, rt, 18 h | OCHO OH N CO ₂ Me CO ₂ Me CO ₂ Me CO ₂ Me (35); β (10) (5) | 161 | | | | OHCO CO_2Me CO_2Me $(29)^a$ | | | OH
N CO ₂ Me
CO ₂ Et | HCO₂H, rt, 3 days | OCHO N CO ₂ Me (87), α : β = 1:1.2 | 161 | | O OH OH | HCO₂H, rt, 19 h | OCHO (100) | 610 | | OH NO | $\mathrm{HCO_2H}$, $\mathrm{CH_2Cl_2}$, reflux, 96 h | HN N (50), $\alpha:\beta = 1:1$ | 520 | Table 5. (Continued) | Table 5A | (Continued) | |----------|-------------| | | | | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|---|--|-----| | Sastific | SS. ISLANTIN | F | | | отмѕ | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , rt,
50 min | NHCHO + NHCHO (16) | 303 | | | HCO₂H, rt, 40 min | OHCONHCHO
(—), cis:trans = 79:14 | 303 | | Et N OMe CO ₂ Me Isomer E | SnCl ₄ , CH ₂ Cl ₂ , –78° to rt,
2 h | CI
Et
CO_2Me
$\frac{\alpha}{(95)}$ $\frac{\beta}{(5)}$ | 166 | | Z | | (33) (67) | | | C ₁₁ | MsCl, Et ₃ N, CH ₂ Cl ₂ , -30 to 20° | (86) | 178 | | H O N OH | HCO₂H, rt, 1 h | OCHO (100), $\alpha:\beta = 3:2$ | 142 | | H—H
ON OH | HCO₂H, rt, overnight | OCHO (quant.) | 142 | | O N OMe CO ₂ Me | SnCl ₄ , DCE, 0-70°,
18 h | CO ₂ Me
H CO ₂ Me
H CO ₂ Me
H CO ₂ Me
H CO ₂ Me | 503 | | O N N OH | HCO₂H, rt, 19 h | OHCO H O (71) | 610 | | ONOEt | HF, 0°, 3 h | F (27) | 506 | | Br | TfOH, CH ₂ Cl ₂ , rt,
15-17 h | Br (36) | 506 | | | TFA, rt, 16-24 h | $\bigcup_{0}^{N} (-)$ | 506 | Table 5. (Continued) | Table 5A (Co | ntinued) | |--------------|----------| |--------------|----------| | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|---
---|------------| | O N OEt | HCO₂H, rt, 18 h | ОСНО (89) ^b | 137 | | N OMe | TiCl ₄ , CH ₂ Cl ₂ , –78° to rt,
33 h | CI
N (50) ^a | 493 | | R R'
O N OH
R R'
H Me | HCO₂H, rt | R' H OCHO R α β α α β β α β β α β β α β α β α β α | 429 | | Me H | | (31), $\alpha:\beta = 3:1$ | | | O N OH | TFA, CH ₂ Cl ₂ , 25°,
5 min | $CF_3C(O)O_{3}$ + H + H O | 150
152 | | | Et ₃ SiH, HCO ₂ H, CH ₂ Cl ₂ ,
25°, 10 h | (62), $\alpha:\beta = 1:3.8$ (12)
OHCO H (0) + P (0) + | 150
152 | | | HCO ₂ H, rt, 0.75 h | OHCO H (65) | 487 | | O N OH Et | HCO ₂ H, rt, 72 h | S (96), α:β = 100:1 | 429
484 | | o N OH | TFA, 0°, 0.5 h | $ \begin{array}{ccc} & H \\ & \downarrow \\$ | 156 | | /\ | HCO ₂ H, rt, 1.75 h | осно (66) | 154
156 | | MeO N- | HCO₂H, п, 18 h | MeO H (quant.), α : β = 1.5:1 | 138 | | OH
OH
N CO ₂ Me
CO ₂ Me | HCO ₂ H, rt, 3 days | OCHO SET (75), $\alpha:\beta = 1:3.7$ CO ₂ Me CO ₂ Me | 161 | Table 5. (Continued) | Table | EΛ | (Continued) | |-------|----|-------------| | | | | | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|--|---|-------------| | HO N OMe | TiCl ₄ , CH ₂ Cl ₂ , –78° to rt,
33 h | HO O (68) ^{a, c} | 493 | | O NOH R TMS R | | R N | 167 | | H
Br | TFA, rt, 0.25 h
TFA, reflux, 2.5 h | (92)
(70) | | | HN OH R' | HCO ₂ H, CH ₂ Cl ₂ , reflux,
11 days | $ \begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & & &$ | 520 | | H Et
Et H | | (54) (23)
(42) (0) | | | ONOE | HCO₂H, rt, 18 h | H OCHO (quant.) | 130 | | C ₁₁₋₁₂ O R | $TiCl_4$, CH_2Cl_2 , reflux, $2\ h$ | R H Me (65)
Et (70) | 170 | | this c ₁₂ | HCO₂H, rt, overnight | H H OCHO (quant.), $\alpha:\beta = 4:1$ | 142 | | ON ACO POST CO 2 Me | HCO₂H, rt, 17 h | OCHO (52), α:β = 1:1.6 | 161 | | | 1. SnCl ₄ , CH ₂ Cl ₂ , 0°, 3 h
2. NaHCO ₃ , 0° | H (69)
CO ₂ Me | 166
215 | | H OH
H O | HCO₂H, rt, overnight | OOHO (quant.), $\alpha:\beta = 4:1$ | 142 | | 0
0
1
H | | CO ₂ Me | 4 27 | | N CO₂Me | $SnCl_4$, CH_2Cl_2 , -78° to rt, 4 h HCO_2H , rt, 18 h | H R (56) OCHO (76) | | # Table 5. (Continued) | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|--|--|------------| | H N Et | HCO₂H, rt, 1 h | H H Et NOCHO (94) ^a | 142 | | O
H Joseph N | HCO₂H, rt, 1 h | OCHO (91) | 142 | | O N NOH | HCO₂H, rt, 0.5 h | OCHO H (85) | 140
143 | | · | TFA, CH ₂ Cl ₂ , rt, 0.25 h | OC(O)CF ₃ H (62) | 140 | | | TFA, CH ₂ Cl ₂ , Et ₃ SiH,
rt, 0.25 h | H OC(O)CF ₃ O H H H (10) | 140 | | OAC
N CO ₂ Me
CO ₂ Et | 1. SnCl ₄ , CH ₂ Cl ₂ , 2 h,
-78 to 20°
2. NaHCO ₃ , 20° | $ \begin{array}{c} CI \\ N \\ CO_2Me \end{array} $ (77) | 166
215 | | | 1. SnCl ₄ , CH ₂ Cl ₂ , 2.5 h,
-78°
2. NaHCO ₃ , -78° | OH
N CO ₂ Me (45) | 166
215 | | OAc
N CO ₂ Me | 1. SnCl ₄ , CH ₂ Cl ₂ ,
4 h, -78 to 20°
2. NaHCO ₃ , 20° | (43) + (18) CO_2Me CO_2Me CO_2Me | 166 | | | 1. SnCl ₄ , CH ₂ Cl ₂ ,
4 h, –78°
2. NaHCO ₃ , –78° | OH $CO_{2}Me$ $CO_{2}Me$ $CO_{2}Me$ $CO_{2}Me$ $CO_{2}Me$ $CO_{2}Me$ $CO_{2}Me$ $CO_{2}Me$ | 166 | | | HCO ₂ H, 40 h, rt | $OCHO$ + OCO_2Me | 161 | | OAC
N CO ₂ Me
CO ₂ Me | 1. SnCl ₄ , CH ₂ Cl ₂ ,
–78 to 20°, 2.5 h
2. NaHCO ₃ , 20° | (44) + $(12)^a$ | 166 | | | | N CO ₂ Me
CO ₂ Me | | Table 5. (Continued) | T | (0 | |----------|-------------| | lable 5A | (Continued) | | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|---|--|------------| | | 1. SnCl ₄ , CH ₂ Cl ₂ ,
-78°, 4 h
2. NaHCO ₃ , -78° | OH (45) + CO_2Me CO_2Me CO_2Me CO_2Me | 166 | | + ON OH | ≻ HCO₂H, rt, 7 days | S S S OCHO (67), α: β = 12:1 | 136 | | MeO N OMe | TiCl ₄ , CH ₂ Cl ₂ , –78° to rt,
33 h | H CCI (777) | 493 | | O N OEt | | H OR | 130 | | | HCO_2H , 1 h
AcOH, 23 h
$AcOH$, H_2O , 2 h
CI_2CHCO_2H , 2 h
HCO_2H , EI_2O , 19 h
HCO_2H , HCO_2O , 18 h | R α:β CHO 57:43 Ac 60:40 H 60:40 C(O)CHCl ₂ 70:30 CHO 57:43 CHO 56:44 | | | o N OH | HCO₂H, 18 h, rt | S S OCHO (-) | 136 | | MeO ₂ C OMe | TICI ₄ , CH ₂ CI ₂ , 33 h,
-78° | MeO ₂ C (89) ^d | 493 | | MeO OMe
ON OH | HCO₂H, rt, 18 h | MeO H Et OCHO MeO H Et (quant.), I:II = 100:1 | 124
138 | | O OH TMS | TiCl ₄ , CH ₂ Cl ₂ , 2 h, reflux | CI (22) | 170 | | OMe
N | TiCl ₄ , CH ₂ Cl ₂ | H CI (60) | 498 | Table 5. (Continued) | | · · · | |----------|-------------| | lable 5A | (Continued) | | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|--|---|-----------------| | ON OH | TFA, CH ₂ Cl ₂ , Et ₃ SiH | $ \begin{array}{c} H \\ N \\ O \\ Pr \end{array} $ (22) | 152 | | OH TMS | TFA, rt, 0.25 h | (90) | 167 | | O N OH | HCO ₂ H, 25°, 8-10 min | H CHO (71) | 143 | | O N OH TMS | TFA, CH ₂ Cl _{2,} 0°, 1 h | (72) | 188 | | OH TMS | 1. NaH, Etl, THF
2. TiCl ₄ , CH ₂ Cl ₂ , 25° | (72) | 185 | | MeO ₂ C | TiCl ₄ , CH ₂ Cl ₂ , 0°-rt | H (89) | 496 | | O N OEt | HCO₂H | H R OCHO | 130 | | R' C ₁₃ | rt, 18 h
rt, 2 h | R R' Me H (quant.) H Me (quant.) ^e | | | HO | HCO₂H, rt, 12 h | 0
N (92) | 611
612 | | | 1. ZrCl ₄ , CH ₂ Cl ₂ , rt
2. H ₂ /Pd-C, EtOH, Bu ₃ SnH,
AIBN | O N (82) | 651 | | OAc
ON OH | | AcQ H | | | ~ | TfCl, Et ₃ N
MsCl, Et ₃ N, CH ₂ Cl ₂ | (75-80)
(68) | 179, 181
179 | | H OH
N | HCO₂H, rt, overnight | H H OCHO (quant.), α: $β = 3$: | 142
2 | | ed) | | | | |---|--|---|------------| | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | | O N
MeO₂C NOAc | HCO₂H, rt, 50 h | OCHO + $\begin{array}{c} H \\ OH \\ OC_{2}Me \\ (47) \end{array}$ (33) | 161 | | MeO ₂ C N CO ₂ Me | 1. MsCl, MeCN,
Et ₃ N, rt
2. Reflux, 3 h | MeO ₂ C N (88), $trans:cis = 78:22$ CO_2 Me | 189 | | AcO CO ₂ Me | 1. SnCl ₄ , CH ₂ Cl ₂ ,
-78 to 20°, 4 h
2. NaHCO ₃ , 20° | CI OAC Et $(80) + CO_2Me$ CO_2Me CO_2Me | 166
215 | | | 1. SnCl ₄ , CH ₂ Cl ₂ ,
-78°, 2 h
2. NaHCO ₃ , -78° | OH
Et
CO ₂ Me
CO ₂ Me | 166
215 | | Et AcO CO₂Me N CO₂Me | 1. SnCl ₄ , CH ₂ Cl ₂ ,
-78°, 2.25 h
2. NaHCO ₃ , -78° | OH N CO_2Me (81), $\alpha:\beta = 9:1$ CO_2Me | 166
215 | | | 1. SnCl ₄ , CH ₂ Cl ₂ ,
–78 to 20°, 2 h
2. NaHCO ₃ , 20° | $\begin{array}{c} CI \\ Et \\ N \\ CO_2Me \\ CO_2Me \\ \end{array} + \begin{array}{c} Et \\ N \\ CO_2Me \\ CO_2Me \\ \end{array} + \begin{array}{c} Et \\ N \\ CO_2Me \\ CO_2Me \\ \end{array}$ | 166
215 | | | | $\begin{array}{c} CI \\ Et \\ O \end{array} (35) + \begin{array}{c} CI \\ Et \\ CO_2Me \end{array} (8)$ | | | | HCO ₂ H, rt, 2 days | OCHO OCHO OCO ₂ Me (77), $\alpha:\beta = 1.3:1$ CO ₂ Me | 161 | | MeO OMe O N OH Br TMS | TFA, reflux, 6 h | MeO H Br
MeO N (74) | 171 | | ONOEt | HCO₂H | OCHO + H OCHO (56) (44) | 130 | | O N OH | HCO ₂ H, rt, 18 h | осно
осно (20) | 505 | Table 5. (Continued) | (Continued) | |-------------| | | | | | | substrate | conditions | product(s) and yield(s) (%) | re | |---------------------------------------|------------------------------|---|---|----------| | <i>*</i> | N
N
CO ₂ Me | | N CO ₂ Me CO ₂ Me | 20 | | EŧÓ | 2 | HCO₂H
TiCl₄ | R I II OCHO (37) (34) CI (56) (16) | | | EtO | N
N
CO ₂ Et | TiCl ₄ , CH ₂ Cl ₂ , –78-20° | CO ₂ Et (95) | 20 | | | OH CI | H ₂ SO ₄ , 0°, 50 min | H Ac + H Ac N (10-15) | 21 | | 0 | | HCO ₂ H, 42°, 10 days
_{Bu} | NH OCHO | 13 | | 0 | ОН | HCO ₂ H, 42°, 14 days | NH OCHO | 13 | | 0 | ОН | TFA, CH ₂ Cl ₂ , 0°, 1 h | (—) | 18 | | 0 | OEt Et | HCO ₂ H, rt, 95 h | OCHO (quant.) | 13 | | | OH TMS | TFA, CH ₂ Cl ₂ , 0°, 4 h | (94) | 18
19 | | ⟨ H | H oOH | HCO ₂ H, rt, overnight | H H (quant.), $\alpha:\beta=3:2$ | 14 | | C ₁₄
MeO ₂ O | OH
N CO₂Me | 1. MsCl, MeCN, Et₃N, rt
2. Reflux, 3 h | MeO ₂ C N (79), trans:cis = 55:45 CO_2Me | 18 | | \
0==4 | N OEt | HF, 0°, 3 h | Br
N F (76.5) | 50 | | Table | 5A | (Continued) | | |-------|----|-------------|--| | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---------------------------------------|---|--|----------| | | TfOH, CH ₂ Cl ₂ , rt,
15-17 h | Br (79) | 506 | | | TFA, rt, 16-24 h | O (69) | 506 | | O N Ph | HCO₂H, rt, 18 h | ОСНО Н ОСНО Ph ОСНО (84) | 155 | | ON OH I | HCO₂H, 20° ⟨ | Ph OCHO H OCHO | 155 | | כוו | c | Ph IV Time I:II:III:IV 0.17 h 84:0:0:16 1 h 32:12:0:56 4 h 4:26:5:65 20 h 0:66:7:27 68 h 0:88:10:2 | | | ON NOH | TFA, CH ₂ Cl ₂ , rt | OC(O)CF ₃ $(48), \alpha:\beta = 1:4.3$ | 152 | | MeO ₂ C CO ₂ Et | TiCl₄ | CO ₂ Me
N
CO ₂ Et (70) | 512 | | ONOEt | HCO₂H C | + ONH + ONH H | 613 | | O N OEt | O ^c | N OCHO ON H | 130
O | | | HCO ₂ H, rt, 18 h
HCO ₂ H, HCO ₂ Na, 45°, 50 h
HCO ₂ H, reflux, 0.5 h
HCO ₂ H, H ₂ O (15%), rt, 18 h
HCO ₂ H, Et ₂ O (1:10), rt, 6 day
Cl ₂ CHCO ₂ H, rt, 18 h
AcOH, rt, 6 days | (54) (46)
(60) (40)
(51) (49)
(70) (30) | | | N N | HCO ₂ H, CH ₂ Cl ₂ ,
rt, 0.5 h | H R R OCHO (79) OH OH (1) | 488 | Table 5. (Continued) | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|---|---|-------------------| | O N OEt | HCO ₂ H, rt, 18 h | OCHO (60) + H H (-) | 129 | | EtO-N CO ₂ Me | HCl, MeOH, -50 to 20°,
18 h | MeO ₂ C MeO ₂ C + (47) (11) | 504 | | H V OOH | HCO ₂ H, rt, 65 h | OCHO (85) | 142 | | H OH | HCO ₂ H, rt, 12 h | H H OCHO (—), $\alpha:\beta=3:2$ | 142 | | O NOEt O | HCI, MeOH | O Pr
H Cl (quant.) | 504 | | O N OH O Pr | HCI, MeOH, rt, 18 h | O Pr
H | 505 | | OMe OAc | TiCl ₄ , CH ₂ Cl ₂ | OAc (>75) | 498 | | O N Bu | HCO ₂ H, 42°, 10 days | O N (22) | 124
134
139 | | ON H Bu | HCO ₂ H, 44°, 8 days | ON (23)
Bu OCHO | 124
134
139 | | | HCO ₂ H, 25°, 32 h | O N + O N N N N N N N N N N N N N N N N | 508 | | OTMS | HCO ₂ H, rt, 2 h | NHCHO (82) | 303 | | CO ₂ Et E:Z = 77:23 | TiCl ₄ , CH ₂ Cl ₂ ,
–78 to 20° | CO ₂ Et (53) | 205 | | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |-----------------------------------|--
---|------------| | N CO ₂ Me | HCO₂H | CO ₂ Me
N
N
R
R
R
OCHO (84) | 205 | | | TiCl ₄ | CI (84) | | | ON TMS | TFA, CH ₂ Cl ₂ , 0°, 4 h | (100), $\alpha:\beta = 7:3$ | 193
198 | | OH Bu | HCO ₂ H, 42°, 14 days | OCHO (30) Me | 139 | | TMS
N OH
CO ₂ Me | MsCl, Et ₃ N, CH ₂ Cl ₂ ,
-20 to 20°, 16 h | $ \begin{array}{c} H \\ N \\ H \\ CO_2Me \end{array} $ (45) | 194 | | OHOH | TFA, CH ₂ Cl ₂ , 0°, 2 h | (70-90) ^h | 204 | | OH | TFA, CH ₂ Cl ₂ , 0°, 4 h | $ \begin{array}{c c} & CF_3C(O)O \\ & H \\ & N \\ & O \end{array} $ TMS $ \begin{array}{c} & (66) \\ & O \end{array} $ | 188 | | O N OH | ć | Ph | 160 | | O N OH | HCO ₂ H, 4 h
HCO ₂ H:AcOH (2:3), 18 h
TFA, CH ₂ Cl ₂ , 5°, 0.5 h | III OH O I II III (11) (89) (0) (7) (77) (4) (0) (44) (53) H OCHO N OCHO + | 160 | | CI | HCO ₂ H, 4 h
HCO ₂ H:AcOH (2:3), 3.5 h | I CI | | Table 5. (Continued) | ed) Table 5A (Continued) substrate C14.15 | conditions | product(s) and yield(s) (%) | ref | |---|---|--|---------------------| | O N SPh | 1. BF ₃ •2AcOH, CH ₂ Cl ₂ ,
rt, 24 h
2. HCO ₂ H, Hg(OAc) ₂ ,
rt, 12 h | Br
N SPh (64), n = 1
(58), n = 2 | 343
346 | | C ₁₅ OEt TMS | TiCl ₄ , CH ₂ Cl ₂ , 25°,
5 min | (80) | 185 | | ONOEt | TiCl ₄ , CH ₂ Cl ₂ , 0°, 4 h | (78) | 19 4 | | ON NOH | HCO ₂ H, 25°, 8-10 min | OCHO (63) | 1 4 3
489 | | O N Bu | HCO ₂ H, heat | N Me OCHO (low) | 139 | | O N OH | HCO ₂ H, rt, 1 h | S N (85) | 514 | | O N OH | HCO₂H, rt, 18 h | OCHO (>65) | 136 | | S N OH | TFA, rt, 0.5 h | H OC(O)CF ₃ Ph (80) | 156 | | Ph | $HCO_2H,$ rt, overnight | S H H OCHO (79) ⁱ | 156 | | H OOH | HCO ₂ H, rt, 29 h | OCHO (quant.) | 1 4 2 | | O N OH | HCO ₂ H, rt, 18 h | H H OCHO (91) | 155 | Table 5. (Continued) | Table | 5A | (Continued) | |-------|----|-------------| | 1 | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|---|--|--|------| | 130
130 | | | | 124 | | HCO ₂ H, 16 h COHO (80) 61:30 HCO ₂ H, 170 h COHO (80) 34:66 HCO ₂ H, 17, 20 h COHO (80) 34:66 HCO ₂ H, 17, 20 h COHO (80) 34:66 HCO ₂ H, 17, 20 h COHO (80) 34:66 HCO ₂ H, 17, 20 h COHO (80) 34:66 HCO ₂ H, 17, 20 h CO ₂ Me HCO ₂ H, 17, 18 h COHO (63) HCO ₂ H (63) HCO ₂ H, 17, 18 h HCO ₂ H (63) HCO ₂ H, 17, 18 h HCO ₂ H (63) HCO ₂ H, 17, 18 h HCO ₂ H (63) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) HCO ₂ H, 18, 18 h HCO ₂ H (73) | o N OEt | F | + | | | HCO ₂ H, 2h HCO ₂ H, 16h OCHO (80) 34.68 HCO ₂ H, 120h | | | 4 i k ii | | | HCO ₂ H, 16 h OCHO (80) 34.98 HCO ₂ H, 120 h OCHO (80) 34.98 HCO ₂ H, 120 h OCHO (80) 34.98 AcOH, H ₂ O ₂ D h | | | R I+II I:II | | | HCO ₂ H, 16 h HCO ₂ H, 120 h CCHO (80) 34 86 H HCO ₂ H, 120 h CCHO (80) 34 86 G ACOH. H ₂ O, 2 h CO ₂ Me HCO ₂ H, 17, 20 h HCO ₂ H, 17, 18 H HCO ₂ H, 18 h HCO ₂ H, 18 h HCO ₂ H HCO ₂ H, 18 h HCO ₂ H HCO ₂ H, 18 h HCO ₂ H HCO ₂ H HCO ₂ H, 18 h HCO ₂ H | | HCO₂H, 2 h | | | | AcOH, H ₂ O, 2 h OH OE HCO ₂ H, rt. 20 h MeO ₂ C. N O ₂ Me Et ₂ AICI, CH ₂ Ct ₂ , 0-20°, 2 h CO ₂ Me SnCl ₄ , CH ₂ Ct ₂ , -78° to rt. 4 h HCO ₂ H, rt. 18 h OCO ₂ Me HCO ₂ H, rt. 18 h rt | | | | | | OAC OAC MeO ₂ C. N. CO ₂ Me Et ₂ AlCl, CH ₂ Cl ₂ , 0.20°, 2 h MeO ₂ C. N. CO ₂ Me Et ₂ AlCl, CH ₂ Cl ₂ , 0.20°, 2 h CO ₂ Me SnCl ₄ , CH ₂ Cl ₂ -78" to rl, 4 h HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h CO ₂ El HCO ₂ H, rl, 18 h | | | OCHO (80) 34:66 | | | O N OEt NCO2H, 17, 20 II 130 MeO ₂ C N CO ₂ Me Ei ₂ AICI, CH ₂ CI ₂ , 0-20°, 21 TIMS CO ₂ Et SnCI ₄ , CH ₂ CI ₂ , -78° to rt, 4 h HCO ₂ H, rt, 18 h CO ₂ Et SnCI ₄ , CH ₂ CI ₂ , -78° to rt, 4 h CI | | AcOH, H ₂ O, 2 h | OH (85) 69:31 | | | O N OEt NCO2H, 17, 20 II 130 MeO ₂ C N CO ₂ Me Ei ₂ AICI, CH ₂ CI ₂ , 0-20°, 21 TIMS CO ₂ Et SnCI ₄ , CH ₂ CI ₂ , -78° to rt, 4 h HCO ₂ H, rt, 18 h CO ₂ Et SnCI ₄ , CH ₂ CI ₂ , -78° to rt, 4 h CI | | | .н. | | | MeO ₂ C CO ₂ Me El ₂ AlCl, CH ₂ Cl ₂ , 0-20°, 2 h MeO ₂ C CO ₂ Me CO ₂ Me SnCl ₄ , CH ₂ Cl ₂ 78° to rt, 4 h HCO ₂ H, rt, 18 h CO ₂ Me HCO ₂ H BF ₃ -El ₂ O CO ₂ Me HCO ₂ H, rt, 18 h | O'N' "OEt | HCO₂H, rt, 20 h | <i>*</i> * * * * * | 130 | | MeO ₂ C CO ₂ Me El ₂ AlCl, CH ₂ Cl ₂ , 0-20°, 2 h MeO ₂ C CO ₂ Me CO ₂ Me SnCl ₄ , CH ₂ Cl ₂ 78° to rt, 4 h HCO ₂ H, rt, 18 h CO ₂ Me HCO ₂ H BF ₃ -El ₂ O CO ₂ Me HCO ₂ H, rt, 18 h | | | | | | MeO ₂ C. CO ₂ Me Et ₂ AICI, CH ₂ Cl ₂ , 0·20°, 2 h CO ₂ Me CO ₂ Me CO ₂ Et MeO CO ₂ Et H H H H H CO CO CO CO CO CO | | | (00) | | | MeO ₂ C C CO ₂ Me Et ₂ AICI, CH ₂ Cl ₂ , 0·20°, 2 h CO ₂ Me CO ₂ Et MeO Me MeO CO ₂ Me MeO CO ₂ Me MeO CO ₂ Et MeO CO ₂ Me MeO MeO CO ₂ Me MeO MeO MeO CO ₂ Me MeO MeO MeO MeO CO ₂ Me MeO MeO MeO MeO MeO MeO MeO | | | (90) (10) | | | El ₂ AICI, CH ₂ Cl ₂ , 0-20°, 215 TMS 2 h MeO ₂ C | Mag c | | | | | TMS CO ₂ Me CO ₂ Me CO ₂ Et CO ₂ Me SnCl ₄ , CH ₂ Cl ₂ , -78° to rl, 4 h HCO ₂ H, rl, 18 h CO ₂ Me HCO ₂ H HCO ₂ H, rl, 18 h CO ₂ Me | - 'N CO ₂ Me | Et ₂ AICI, CH ₂ CI ₂ , 0-20°, | $(78), \alpha:\beta = 3.5:1$ | 189 | | TMS O CO ₂ Et MeO SnCl ₄ , CH ₂ Cl ₂ , -78° to rt, 4 h HCO ₂ H, rt, 18 h O CO ₂ Me HCO ₂ H H HCO ₂ H HCO ₂ H HCO ₂ | | 2 h | | 215 | | MeO SnCl ₄ , CH ₂ Cl ₂ , -78° to rt, 4 h HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h CO ₂ Et HCO ₂ H BF ₃ ·Et ₂ O HCO ₂ H, rt, 18 h | тмѕ | | CO₂Me | | | MeO SnCl ₄ . CH ₂ Cl ₂ 78° to rt, 4 h HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h CO ₂ Et HCO ₂ H | 0 | | O ÇO₂Et | | | MeO SnCl ₄ , CH ₂ Cl ₂ , -78° to rt, 4 h HCO ₂ H, rt, 18 h CO ₂ Et HCO ₂ H HCO ₂ H, rt, 18 h CO ₂ Et HCO ₂ H HCO ₂ H, rt, 18 h CO ₂ Et HCO ₂ H HCO ₂ H, rt, 18 h CO ₂ Et HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h HCO ₂ | | | Ĭ Ņ / | 407 | | MeO SnCl ₄ , CH ₂ Cl ₂ , -78° to rt, 4 h HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h NCO ₂ Et HCO ₂ H HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ | \ / H | | O O R | 427 | | SnCl ₄ , CH ₂ Cl ₂ -78° to rt, 4 h HCO ₂ H, rt, 18 h OCHO (63) OCO ₂ Me HCO ₂ H, rt, 18 h CO ₂ Et HCO ₂ H HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ H HCO ₂ H, rt, 18 h HCO ₂ | H-N | | , , , , , , , , , , , , , , , , , , , | | | SnCl ₄ , CH ₂ Cl ₂ , -78° to rt, 4 h HCO ₂ H, rt, 18 h CI (77) OCHO (63) (64) OC | N ag Fi | | H | | | HCO ₂ H, rt, 18 h OCHO (63) (73) OCHO (63) (64) OCH | MeO CO ₂ Et | | <u>R</u> | | | O CO ₂ Me H TMS HCO ₂ H, rt, 18 h N CO ₂ Me N CO ₂ Me N CO ₂ Me N CO ₂ Et HCO ₂ H BF ₃ ·Et ₂ O (61) H OH H OCHO H OH H OCHO H OH TFA, CH ₂ Cl ₂ , 5°, 0.5 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | | | | | | O CO ₂ Me H TMS HCO ₂ H, rt, 18 h CO ₂ Et HCO ₂ H BF ₃ ·Et ₂ O CO ₂ Et HCO ₂ H, rt, 18 h | | HCO ₂ H, rt, 18 h | OCHO (63) | | | HOO ₂ H, rt, 18 h NCO ₂ Me HOO ₂ H HCO ₂ H BF ₃ ·Et ₂ O (61) HCO ₂ H, rt, 18 h OH HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h OH HCO ₂ H, rt, 18 h | 0 | | | | | HOO ₂ H, rt, 18 h NCO ₂ Me HOO ₂ H HCO ₂ H BF ₃ ·Et ₂ O (61) HCO ₂ H, rt, 18 h OH HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h OH HCO ₂ H, rt, 18 h | | | O
II ∠CO₂Me | | | CO ₂ Me HO CO ₂ Me HO CO ₂ H HCO ₂ H BF ₃ ·Et ₂ O (61) HCO ₂ H, rt, 18 h TFA, CH ₂ Cl ₂ , 5°, 0.5 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | TMS | HCO ₂ H, rt, 18 h | O N | 427 | | MeO TMS TFA, CH ₂ Cl ₂ , 0°, 4 h CO ₂ Et | H-N | | (73) | | | MeO TMS TFA, CH ₂ Cl ₂ , 0°, 4 h CO ₂ Et | N CO M- | | YN | | | TMS TFA, CH ₂ Cl ₂ , 0°, 4 h 205 (85) (85) (85) (85) (85) (85) (85) (85) (85) (85) (85) (85) (85) (85) (85) (85) (94) H H H OCHO (quant.) (quant.) (quant.) (quant.) H A OCHO (quant.) | MeO CO ₂ Me | | Ĥ [*] | | | HOO ₂ Et HCO ₂ H (85) (85) (61) HCO ₂ H (85) (61) HCO ₂ H, rt, 18 h (94) HCO ₂ H, rt, 18 h (100) OMe HCO ₂ H, 4 h (100) OMe TFA, CH ₂ Cl ₂ , 5°, 0.5 h (94) TFA, CH ₂ Cl ₃ , 0°, 4 h Re (60) 207 | \/ | | CO ₂ Et | | | HO CO ₂ Et HCO ₂ H BF ₃ ·Et ₂ O (61) HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h HCO ₂ H, 4 h TFA, CH ₂ Cl ₂ , 5°, 0.5 h (94) HCO ₂ H, 4 h TFA,
CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | N TMS | | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | HO CO ₂ Et HCO ₂ H BF ₃ •Et ₂ O (61) HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h HCO ₂ H, 4 h TFA, CH ₂ Cl ₂ , 5°, 0.5 h (94) TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | \n\ | | | 205 | | BF ₃ ·Et ₂ O (61) HCO ₂ H, rt, 18 h HCO ₂ H, 4 h TFA, CH ₂ Cl ₂ , 5°, 0.5 h TMS TFA, CH ₂ Cl ₂ , 0°, 4 h (61) HH H H H H H H H H H H H H H H H H H | HO CO₂Et | HCO-H | (85) | | | HCO ₂ H, rt, 18 h HCO ₂ H, rt, 18 h HCO ₂ H, 4 h TFA, CH ₂ Cl ₂ , 5°, 0.5 h TFA, CH ₂ Cl ₂ , 0°, 4 h HCO ₂ H, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | | | | | | HCO ₂ H, rt, 18 n HCO ₂ H, rt, 18 n HCO ₂ H, rt, 18 n HCO ₂ H, 4 h TFA, CH ₂ Cl ₂ , 5°, 0.5 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | | B1 3 E120 | | | | TMS TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | | 1100 11 - 40 5 | √NH → JOCHO | 4.40 | | TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | | HCO ₂ H, π, 18 h | \bigvee / Υ Υ | 142 | | TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | () \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | H (quant.) | | | HCO ₂ H, 4 h TFA, CH ₂ Cl ₂ , 5°, 0.5 h (100) OMe TMS TFA, CH ₂ Cl ₂ , 0°, 4 h TFA, CH ₂ Cl ₂ , 0°, 4 h | HA | | ő l | | | HCO ₂ H, 4 h TFA, CH ₂ Cl ₂ , 5°, 0.5 h TMS TFA, CH ₃ Cl ₂ , 0°, 4 h TFA, CH ₃ Cl ₂ , 0°, 4 h | | | ы | | | HCO ₂ H, 4 h TFA, CH ₂ Cl ₂ , 5°, 0.5 h (100) OMe TFA, CH ₂ Cl ₂ , 5°, 0.5 h TMS TFA, CH ₂ Cl ₂ , 0°, 4 h | O NOH | | H OCHO | 160 | | TFA, CH ₂ Cl ₂ , 5°, 0.5 h (94) 15-16 TMS TFA, CH ₂ Cl ₂ , 5°, 0.5 h R Me (60) 207 | Ĭ, | | N. Ye | 100 | | TFA, CH ₂ Cl ₂ , 5°, 0.5 h (94) 15-16 TMS TFA, CH ₂ Cl ₂ , 5°, 0.5 h R Me (60) 207 | Y \ | | | | | TFA, CH ₂ Cl ₂ , 5°, 0.5 h (94) | | | | | | OMe 15-16 | | | | | | TMS TFA, CH ₂ Cl ₂ , 0°, 4 h TFA (60) 207 | | 1FA, CH ₂ Cl ₂ , 5°, 0.5 h | (94) | | | TMS TFA, CH ₂ Cl ₂ , 0°, 4 h TFA (60) 207 | I5-16 // | | | | | TFA, CH ₂ Cl ₂ , 0°, 4 h | | | H
T | | | N OEt N H Et (62) CO ₂ R RO ₂ C H Et (62) | / \ | TEA CHICL OF AN | | 207 | | CO ₂ R RO ₂ C H | N OEt | 1 FM, CF12C12, U , 4 11 | N Ft (62) | 207 | | <u>_</u> | CO ₂ R | | RO ₂ C H | | Table 5. (Continued) | Table EA | (Continued) | |-----------|-------------| | I avic JA | CONTINUED | | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |------------------------------------|--|------------------------------------|-----| | HN—\ | | R' | | | O N OH | PPA, 100°, 6 h | R R R' H H (67) | 652 | | C ₁₆ Ph | HCO₂H, rt, 4 days | Me H (60)
H Cl (39)
Ph. OCHO | 610 | | Ph
S
O
N
OH
N
OH | нсо₂н | Ph H Et OCHO S N (87) | 429 | | S OH OH | HCO ₂ H, rt, 19 h | H OCHO S N (12) OMe | 156 | | ОМе | HCl, MeOH, 17 h, rt | S N H CI (11) | 156 | | OH N | HCO ₂ H, rt, 18 h | OMe (100) | 142 | | O N NOEt | HCO₂H, rt, 16 h | (29) + ON H (9) | 613 | | f-BuC(O)O | TiCl ₄ , CH ₂ Cl ₂ , –78° to rt,
33 h | t-BuC(O)O (90) ^a | 493 | | ON NOEt | HCO ₂ H, rt, 5 h | (90) + O N H | 130 | | O N OH | HCO₂H, 43°, 913 h | OCHO
S
N (84) | 156 | | O N O TMS | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 4 h | O H (72) | 172 | # Table 5. (Continued) | Table | 5A | (Continued) | |-------|----|-------------| | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|--|--|-----| | MeO ₂ C N CO ₂ Me | _TMS
Et ₂ AlCl, CH ₂ Cl ₂ ,
0-20°, 2 h | MeO ₂ C ^{α/s} N (75), α:β = 1.2:1 CO ₂ Me | 189 | | TMS N OMe CO ₂ Me | 1. BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 3.5 h
2. MeOH, rt, 3 h | MeO_2C O MeO_2C O MeO_2C O | 192 | | 0 0 | 1. TiCl ₄ , CH ₂ Cl ₂ , rt
2. H ₂ /Pd-C, EtOH, Bu ₃ SnH,
AIBN | O (65) | 651 | | C ₁₆₋₁₇ | HCO₂H, rt, 18 h | R H (quant.) Me (quant.) | 124 | | O N OH Ph | HCO₂H, rt, 69 h | R H (quant.) Me (quant.) | 124 | | C ₁₇ X OH | HCO₂H, rt, 1 h | X 0 (65)
NH (88) | 514 | | O NO | 1. TiCl ₄ , CH ₂ Cl ₂ , rt
2. H ₂ /Pd-C, EtOH, Bu ₃ SnH,
AIBN | O N (85) | 651 | | O O O O O O O O O O O O O O O O O O O | MsCl, Et ₃ N, CHCl ₃ , MeCN, 20°, 1 day | O. H. S (85) | 181 | | Ph Cl Ac N TMS | Et ₂ AICI, CH ₂ CI ₂ ,
0°-rt, 2 h | Ph (69) | 187 | | MeO ₂ C CO ₂ Me | | MeO ₂ C H-R | 395 | | | HCO ₂ H
TiCl ₄ | $\frac{R}{CO_2H}$ α (57), β (16)
CI α (50), β (30) | | Table 5. (Continued) | Table 5A (| (Continued) | |------------|-------------| |------------|-------------| | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|---|--|-----| | Eto N CH ₂ OH | SnCl ₄ , CH ₂ Cl ₂ , -23° | Me Me M | 224 | | Isomer E Z | <u>Time</u>
1.5 h
8 h | $ \begin{array}{ccc} \alpha & \beta \\ \hline (0) & (78) \\ (80) & (0) \end{array} $ | | | N OME | TiCl₄, CH₂Cl₂ | $ \begin{array}{c c} H & CI \\ NO_2 & (63) \end{array} $ | 498 | | NO ₂ | 1. HCO ₂ H, rt, 1 h
2. KOH, EtOH, 0-5°,
1.5 h | OMe OMe OMe | 492 | | | 1. TiCl ₄ , CH ₂ Cl ₂ , rt
2. H ₂ /Pd-C, EtOH, Bu ₃ SnH
AIBN | O N (82) | 651 | | TMS O N N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N N | HCO₂H, rt, 0.5 h | O (89) | 202 | | O N N N S | 1. MsCl, Et ₃ N, CH_2Cl_2 , 30 min 2. MeCN, rt, overnight | (60) | 183 | | | TiCl ₄ , CH ₂ Cl ₂ , rt, 2 h | CI (42) (28) | 651 | | | | O N CI (21) | | | MeO ₂ C N | HCO₂H
Me | OCHO OMe (72) | 145 | | Fable 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---------------------------------|--|--|------------| | eO" N O | 1. MeOH, HCl, CH ₂ Cl ₂ ,
-78° 2. DBU, toluene, reflux | Ts N O (67) | 209 | | Ph
TMS
N
N
OH
Me | TFA, CH ₂ Cl ₂ , 0-40°, 20 h | Ph H (88) | 207 | | Ph OEt Et | HCO ₂ H, rt, 3 days | Ph. S N OCHO (25) | 610 | | N OH Ph | Cl₂CHCO₂H, 0.5 h | (93), 8,9 trans; 8,14 anti | 124 | | OEt Ph | HCO₂H, rt, 18 h | (quant.), 8,9 trans; 8,14 anti | 129
131 | | N OEt Ph | HCO ₂ H, rt, 18 h | (quant.), 8,9 trans; 8,14 anti | 129
131 | | O N OH Ph | | , H | 136 | | O N OH | HCO ₂ H, rt, 1 h Cl ₂ CHCO ₂ H, rt, 0.5 h toluene, reflux | 8,9 trans; 8,14 anti (68) (93) | 614 | | O N OEt | TsOH (cat.), 40 min
TsOH (cat.), 3 h
TsOH (cat.), 24 h
TsOH (1 eq), 30 min | 1: : | | | Ph | HCO_2H , rt. 18 h
Cl_2CHCO_2H , 5°, 0.5 h
Ac_2O , $AcOH$, rt, 20 h
HCI , $EtOH$, 0 - 10° , 2 h
$TsOH$, C_6H_6 , rt, 70 h
TFA , CH_2Cl_2 , 5°, 0.5 h | (40)
(75)
(70)
(49)
(29)
(89) | 131 | Table 5. (Continued) | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|---|---|------------| | C ₁₈₋₁₉ | | | | | O N SPh | BF ₃ •2AcOH, CH ₂ Cl ₂ ,
25° | (54), n = 1
(52), n = 2 | 343
346 | | C ₁₉ | | ő | | | ONO | 1. TiCl ₄ , CH ₂ Cl ₂ , rt
2. H ₂ /Pd-C, EtOH, Bu ₃ SnH
AIBN | | 651 | | MeO ₂ C OMe | HCO₂H | OCHO OMe (74) N CO ₂ Me | 145 | | HONO | toluene, reflux | + | 614 | | | | Et N N N N N N N N N N N N N N N N N N N | | | | TsOH (cat.), 40 min
TsOH (cat.), 10 days
TsOH (cat.), 25 days
TsOH (1 eq), 1 h | I II (25) (65) (0) (22) (57) E (21) (10) (48) E (42) (10) (68) E (22) | | | Bn N OAc OCO ₂ Me | SnCl ₄ , CH ₂ Cl ₂ | Bn (-),
(-),
trans:cis = 84:16 | 428 | | BnO Non OMe | TICI ₄ , CH ₂ CI ₂ | HO (82) ^a | 621 | | O N OEt OMe | С ₆ Н ₆ , TsOH, heat
М | 11 N N N N N N N N N N N N N N N N N N | 653 | | | 1. TsOH, C ₆ H ₆ , 80°
2. HCl, MeOH | 11 N O O O O O O O O O O O O O O O O O O | 467 | | | | Table 5A | (Continued) | |--|--|----------|-------------| | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|---|--|------------| | O N OEt OMe | HCO₂H, rt, 18 h | $ \begin{array}{c c} CI & H \\ H & H \end{array} $ (30) | 513 | | | Me
HCO₂H, rt | MeO O I + | 131 | | C ₂₀ | | OMe H N II (—), I:II = 1.8:1 | | | Bn N OAc O CO ₂ Me | SnCl ₄ , CH ₂ Cl ₂ | Bn N (56) ^j CO ₂ Me | 428 | | Bn N OAC OCO ₂ Me | SnCl ₄ , CH ₂ Cl ₂ | Bn-N CI (65) ^k CO ₂ Me | 428 | | Bn N OAc OCO ₂ Me | Et₂AICI, CH₂CI₂ | Bn N $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | 428 | | | HCO₂H, CH₂Cl₂ | $\begin{array}{c} \text{Bn} \\ \text{N} \\ \text{O} \\ \text{O} \\ \text{CO}_2 \text{Me} \end{array} $ | 428 | | CO ₂ Et | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
reflux, 12 h | EtO ₂ C N (88) | 86 | | OAC
ON OH
OBn | HCO₂H, rt, 24 h | AcQ H OBn AcQ H OBn OCHO OCHO (60) (17) | 152
157 | | BnO N OMe | TiCl ₄ , CH ₂ Cl ₂ , –78° | to rt BnO O (89) | 621 | | ON OEt | HCO ₂ H, rt, 0.5 h | Bn (66) + ON OH (27) endo:exo = 36:64 | 202 | Table 5. (Continued) | Table 5A | (Continued) | |----------
-------------| | | | | substrate | conditions | product(s) and yield(s) (%) | ref | |--|---|--|------------| | O CO ₂ Et | BF ₃ •2AcOH, CH ₂ CI ₂ ,
rt, 10 h | HO HO HO EtO ₂ C O (60) EtO ₂ C O (15) | 86
516 | | Ph OEt AcN TMS | HCO₂H, rt, 16 h | Ph N (40) + Ph N (20) | 187 | | Ph N CO ₂ Et TMS | HCO ₂ H, rt, 17 h
SnCl ₄ , CH ₂ Cl ₂ , rt, 2 h
Et ₂ AlCl, CH ₂ Cl ₂ , 0°-rt, 2 h | (81) CO ₂ Et (73) (69) | 187 | | OEt N TMS | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , 0° | Ph N (71) | 168 | | MeO No | TiCl ₄ , CH ₂ Cl ₂ , –78° | N Ts (76) | 209 | | TMS O N OEt Bn | TFA, rt, 0.5-1 h
HCO₂H, rt, 0.5-1 h | $\frac{\alpha}{(73)}$ $\frac{\beta}{(4)}$ $\frac{(10)}{(82)}$ $\frac{(5)}{(5)}$ | 202
203 | | Bn N OAC O CO ₂ Me | CH ₂ Cl ₂ | $ \begin{array}{c c} & & & \\ & & $ | 428 | | | SnCl₄
HCO₂H | CI (58)
OCHO (66) | | | BnO N OMe | TiCl ₄ , CH ₂ Cl ₂ | OAc (85) | 498 | | MeO OMe TMS | MsCl, Et ₃ N, CH ₂ Cl ₂ , rt, overnight | OMe
OMe
OMe
(80) | 186
194 | | O N OH SnBu ₃ | | H-H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N | | | | MsCl, Et ₃ N, CH ₂ Cl ₂ , 0°-rt Ph ₂ S ₂ , Bu ₃ P; then $h\nu$ | (45), α : β = 11:1 (77), α : β = 74:1 | 211
212 | Table 5. (Continued) | Table | 5A | (Continued) | |-------|----|-------------| | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|--|---|------------| | TMS O N O E O N O O O O O O O O O O O | HCO ₂ H, rt , 0,5 h | Bn N (94), endo:exo = 94:6 | 202 | | O N OH TMS MeO | TFA, CH ₂ Cl ₂ , -78°,
5 h | MeO (99), α:β = 1:4 | 197 | | TMS Bn | TFA, CH ₂ Cl ₂ , 0°-rt,
1 h | Bn γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ | 202
203 | | O N OH | BF ₃ •Et ₂ O, Et ₂ O,
rt, 24 h | + O N H (24) Bn H (4) | 501 | | | | O N H Bn (5) | | | | 1. TMSOTf, -78°
2. BSA, rt, 10.5 h | O N H O N H Bn (28) | 501 | | Ph Ph O N OH | HCO ₂ H, 22°, 1.5 h | Ph H OH (70), $\alpha:\beta = 1:13$ | 159 | | BnQ OBn
ON OH | HCO ₂ H, rt, 18 h Bn | BnO H BnO H OCHO α (24), β (12) α (6), β (12) | 216 | | TMS N Bn AcO N O MeO ₂ C O | SnCl₄, CH₂Cl₂ | TMS— N Bn (68) $N = 0$ (68) | 428 | | O N OH | HCO₂H, rt, 18 h | + H H O H Ph (44) | 162 | | TMS OBn | TFA, 60°, 18 h
HCO ₂ H, rt, 0.5-1 h | (85), α : β = 1:1.4 | 202
203 | Table 5. (Continued) | Table EA | (Continued) | |-----------|-------------| | I ADIE JA | Continueur | | substrate | conditions | product(s) and yield(s) (%) | re | |-------------------------|---|------------------------------|----| | H OH TMS | 3 | ₩ ₩ Æ | | | H OH (| TFA, 0°, 6 h | $RpO(C_{-N}) \qquad (72)$ | 17 | | BnO ₂ C-N N- | , , | BnO_2C-N | | | H | | H 0 | | | 23 | | | | | O NOW OH | | H H ~o | 16 | | N OH | | | | | | |) H | | | OBn | HCO ₂ H, rt, 70 h | O OMe (67) | | | | HCO₂H, 18 h | (30) | | | MeÓ | TFA, 18 h | (23) | | | PhO ₂ S TMS | | SO₂Ph | | | PnO ₂ S | TFA, CH ₂ Cl ₂ , 0°, 2 h | | 24 | | O N NOH | 1 FA, GH ₂ OI ₂ , U , Z II | N | 20 | |
Ph | | Ph [∕] Ĥ | | | TBDMSO | | TBDMSO | | | H H CI | AgBF ₄ , CH ₂ Cl ₂ , –78° | CHO (33) | 16 | | ОТВОМЅ | | N -CITO | 10 | | CO ⁵ We | | O′ (
CO₂Me | | | | | | | | TMS | | Bn | | | Bn | Et ₂ AlCl, CH ₂ Cl ₂ | O N (83) | 4: | | O N OAc | | Ö CO ₂ Me | | | II I
O CO₂Me | | Bn | | | | TFA, CH ₂ Cl ₂ | O_N -OC(O)CF ₃ | 4: | | | | ∏ | | | | | | | | BnO OMe | TiCl ₄ , CH ₂ Cl ₂ , -78° to rt, | (94) | 4: | | 0 | overnight | CI CI | | | | | но | | | | | • | | | | | Н | | | Ph | | /\(\frac{1}{2}\) | | | N N OEt | SnCl ₄ , CH ₂ Cl ₂ , -23° | H N | 2: | | CO ₂ t-Bu | | Phronto | | | Isomer | Time | α β | | | E
Z | 1.5 h
1 h | (0) (80)
(77) (3) | | | | | · / · · / | | | ,OAc | | AcQ H | | | O NOH | MsCl, Et ₃ N, CH ₂ Cl ₂ , rt | (73) | 2 | | N SnBu₃ | |) N | | | | | U | | | TIPSOO | | .0 | | | , H | TFA, reflux, 0.25 h | | 11 | | Br | | $O \longrightarrow N$ (74) | * | | ONOMe
Me | | Me Br | | Table 5. (Continued) | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|--|--|------------| | TMS ON OEt | SnCl ₄ , CH ₂ Cl ₂ , rt, overnight | 0 + O N Bn (20) (80) | 202 | | C ₂₄ Et OH BnO N | HCO ₂ H, rt, 18 h | BnO H Et OCHO (62) | 216 | | OBn
ON OH
Et | HCO ₂ H, rt, 18 h | BnO H Et OCHO $A = 3.3:1$ | 216 | | N OTIPS | TiCl ₄ , CH ₂ Cl ₂ | CI
Ph
OH | 308 | | PhO ₂ S TMS | TFA, CH ₂ Cl ₂ , 0°, 2 h | PhO ₂ S H (30) | 207 | | O N OH BnO TBDMSO | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
0°-rt | OH OBN OH OBN + OTBDMS OTBDMS OTBDMS OTBDMS OTBDMS OTBDMS | 217 | | BnO NOMe | TiCl ₄ , CH ₂ Cl ₂ , –78° to | Ort (90) | 496
498 | | BnO Nome | TiCl ₄ , CH ₂ Cl ₂ | NO ₂ (61) | 498 | | TIPSO ———————————————————————————————————— | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
20° | O H H OHC H (-), I:II = 7:3 | 233 | Table 5. (Continued) | Table 5A (Continued) substrate | conditions | product(s) and yleld(s) (%) | ref |
---|--|--|-----| | C ₂₅ | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
0°-rt | OBn OH OBn OH | 217 | | BnO' | 1. AlCl ₃ , CH ₂ Cl ₂ , rt
2. 0°-rt | OBn (70) | 217 | | O N OH | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
0°-rt | OBn
OBn (55) | 217 | | BnO | 1. AlCl₃, CH₂Cl₂, rt
2. 0°-rt | OBn H OBn (57), α:β = 3.75:1 | 217 | | HO N | нсо₂н | ,OCHO | 145 | | BnO OMe | ₂ Me
TiBr ₄ , CH ₂ Cl ₂ | MeO ₂ C ^{-N} H
H
HO N (89) | 498 | | TMS H OEt | HCO ₂ H, rt, 0.5 h | O (98) | 202 | | C ₂₆₋₃₃ OR CO ₂ Et N R' OEt R R' TIPS i-Pr TBDPS i-Pr TIPS Pr TBDPS Pr | BF ₃ •Et ₂ O, DTBMP,
CH ₂ Cl ₂ , 0° | (69), 39% ee
(91), 88% ee
(87), 87% ee
(75), 87% ee | 616 | | C ₂₇ BnO OBn ON OAC TMS | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , rt,
2 h | BnO H
BnO (99) | 173 | Table 5. (Continued) | able 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|---|-------------------------------------|-----| | TIPSO ———————————————————————————————————— | 1. TMSOTf, CH_2CI_2
-15°, 6 h
2. NaBH ₄ , EtOH | Me N TMS (13) + | 235 | | ⊋ 29 | | Me N TMS | | | BnH
ON OEt | | Me N H Me N H OHC H | 233 | | E:Z
<10:90
<10:90
<10:90
>90:10
>90:10
>90:10 | SnCl ₄ , 20 h
TiCl ₄ , 22 h
BF ₃ •Et ₂ O, 0.6 h
BF ₃ •Et ₂ O, 2 h
BF ₃ •Et ₂ O, 0.45 h
BF ₃ •Et ₂ O, 0.15 h | I+II+III | | | ON N BN SPH STANDARS | | Bn N Bn Bn N Bn H H + SPh SPh | 654 | | | | Bn N Bn N Bn N Bn N Bn N Bn N OTBDN | 18 | | | AlCl ₃ , -78° to rt TiCl ₄ , -78° to rt BF ₃ •Et ₂ O, 0°-rt AgOTf, 0°-rt TBDMSOTf, 0°-rt PhSH, rt TBDMS-SPh, TBDMSOTf, p-NO ₂ C ₆ H ₄ CHO, TBDMSOTf, rt, 5 min | ` , | | | Bn N Bn H OEt | TMSOTf, CH ₂ Cl ₂ ,
–78°, 1 h | Bn N Bn Bn N Bn H (-) | 237 | 1. MsCl, Et₃N, MeCN, CO₂CHPh₂ Table 5. (Continued) | Table 5A (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--|--|---|-----| | OEt OBn | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
rt, 60 h | O N H (69) + | 191 | | BnO OBn ON OH S | MsCl, Et₃N, CH ₂ Cl ₂ ,
–20°, 2 days | OBn (26) OBn (84) | 183 | | C ₃₃₋₃₄ OTBDPS CO ₂ Et N R OEt R (E)-MeCH=CH CO ₂ Et t-Bu | BF ₃ •Et ₂ O, DTBMP,
CH ₂ Cl ₂ , 0° | O H
N CO ₂ Et
(53), 90% ee
(64), 0-20% ee
(34), 88% ee | 616 | | C ₃₆₋₃₇ OTBDPS CO ₂ Et N R OEt R Ph 4-MeOC ₆ H ₄ | BF ₃ •Et ₂ O, DTBMP,
CH ₂ Cl ₂ , 0° | (63), 85% ee
(72), 88% ee | 616 | | CH ₂ SPh C ₃₇ O Bn N N Bn H OEt OTIPS E or Z isomer | TMSOTf, CH ₂ Cl ₂ ,
–78°, 1 h | (51), 90% ee Bn N Bn H (91) | 237 | | C ₄₁ OOMe OSi(<i>l</i> -Bu) ₃ MeO BnO ₂ C O | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
//e 0°-rt , 0.5 h | MeO OMe (48) | 236 | | | | O CO ₂ Bn OH MeO (23) | | Table 5. (Continued) | | | es, Enamides, Carbamates, and Ureas | | |------------------------------|---|---|-----| | substrate | conditions | product(s) and yield(s) (%) | ref | | C _B | 1. NaBH₄, HCl, EtOH
2. HCO₂H, rt, 18 h | OCHO Y O (80)
S (78) | 510 | | NHCO ₂ Me | MsOH, rt | $\begin{array}{ccccc} & & & X & \\ & & & X & \\ & & & O & (47) \\ & & & NHCO_2Me & NH & (51) \end{array}$ | 517 | | MeS(O) Nes | TFAA, CH ₂ Cl ₂ , 0° | MeS———————————————————————————————————— | 72 | | O N
Me | HCO₂H, 18 h | OCHO Me (quant.) | 133 | | C ₁₁ O N O R TMS | 1. NaBH ₄ , MeOH, 0°
2. TFA,
T | R | 169 | | R
H
Br | 25° reflux | (92)
(63) | | | MeS H N Br | 1. (Me ₂ SSMe) ⁺ BF ₄ ⁻ , CH ₂ Cl ₂ -40° to rt 2. 98% HCO ₂ H, Hg(OAc) ₂ 12 h | O (58) | 345 | | ON S | 1. NaBH ₄ , MeOH, -4°, 1 h 2. MsCl, Et ₃ N, CH ₂ Cl ₂ , -20° to rt, overnight | S S (86) | 180 | | o | HCO₂H, rt, 18 h | ОСНО (69) | 322 | | C ₁₂ | TfOH, Bu ₄ NI, CHCl ₃ , rt | (73-92) | 485 | | | 1. HCO ₂ H, rt,
2. NH ₃ , MeOH | HO (92) | 309 | | o s | 1. NaBH ₄ , MeOH, -4°, 1 h
2. MsCl, Et ₃ N, CH ₂ Cl ₂ ,
-20° to rt, overnight | \$ (70) | 180 | Table 5. (Continued) | Table 5B (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------------|---|-----------------------------|-----| | o No | 1. NaBH ₄ , MeOH, -4°, 1 h 2. MsCl, Et ₃ N, CH ₂ Cl ₂ , -20° to rt, overnight | S (71) | 180 | | O NO TMS | 1. NaBH ₄ , MeOH, 0°
2. TFA, rt | (91) | 169 | | N- | 1. NaBH₄, MeOH, 0°
2. HCO₂H, rt, 2 h | H (61) | 141 | | H O O | HCO ₂ H, rt, 24 h | OCHO + H OH | 152 | | EtS ONH Br | 1. (Me ₂ SSMe) [*] BF ₄ ⁻ , CH ₂ Cl ₂ –40° to rt 2. 98% HCO ₂ H, Hg(OAc) ₂ 12 h | O (65) | 345 | | C ₁₃ | 1. NaBH ₄ , MeOH, -4°, 1 h 2. MsCl, Et ₃ N, CH ₂ Cl ₂ , -20° to rt, overnight | (48) | 180 | | Ph S(O)Et | Ac ₂ O, TsOH, C ₆ H ₆ ,
reflux, 3 h | NH O (42) | 655 | | | 1. NaBH ₄ , MeOH, -4°, 1 h 2. MsCl, Et ₃ N, CH ₂ Cl ₂ , -20° to rt, overnight | S S (79) | 180 | | O NO CI | 1. MeMgl, Et ₂ O, rt, 12 h
2. H ₂ SO ₄ , 0°, 70 min | Ac (67) | 499 | | O H | HCO ₂ H, rt, 9 h | H OCHO + H OH | 152 | | | TFA, CH₂Cl₂, Et₃SìH | ОСНО
(25) | 152 | Table 5. (Continued) | Table | 5B | (Continued) | | |-------|----|-------------|--| | Table 5B (Continued) | 170 | | | |--------------------------------------|---|--|------------| | substrate | conditions | product(s) and yield(s) (%) | ref | | | 1. HCO ₂ H, rt,
2. NH ₃ , MeOH | HO (60) | 309 | | MeO_2C R R R H | HCO₂H, reflux, 4-6 h | MeO_2C R (65) | 231
232 | | Br | TFA, reflux, 8-10 h | (85) | | | C ₁₄ O N Bu + O N Bu H | HCO₂H, 25°, 32 h | O N + O N H S O CHO (40) (30) | 507 | | ON CO ₂ Me | 1. NaBH ₄ , EtOH, –20°
2. HCO ₂ H, rt | CO ₂ Me
N
(75) | 208 | | O O CO_2Me | BF ₃ •Et ₂ O, CH ₂ Cl ₂ , 50°,
1.5 h | MeO ₂ C (58) | 532 | | c_{15} O CO_2Me TMS | 1. NaBH ₄ , EtOH, –20°
2. HCO ₂ H, rt | CO ₂ Me N α (73), α : β = 1:17 | 208 | | O N Ph | HCO₂H, 18 h, rt | Ph -OCHO (65) | 136 | | NHCO₂Bu
NHCO₂Bu | MsOH, rt | $MsO \qquad \begin{array}{c} X \\ \\ \\ NHCO_2Bu \end{array} \qquad \begin{array}{c} X \\ \\ NH \qquad (80) \end{array}$ | 517 | | C ₁₆ | | O N | | | | PPA, 100°, 20 h
PPA, 105°, 21 h | (61)
(—) | 24
32 | | O S(O)Et | Ac ₂ O, TsOH, toluene, reflux, 30 min | O
N
SEt (51) | 655 | Table 5. (Continued) | Table 5D | (Continued) | |----------|-------------| | | | | Table 5B (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |----------------------------------|--|-----------------------------|-----| | BnO | MeCN, carbon anode,
MeOH, Bu₄BF₄ TiCl₄, CH₂Cl₂, -78° to rt,
40 h | H CI
N (49) | 496 | | EtS H | (Me ₂ SSMe) [*] BF ₄ ⁻ ,
CH ₂ Cl ₂ , rt | N (48) | 345 | | NHCO₂t-Bu | TiCl ₄ , CH ₂ Cl ₂ , reflux | HN N (65) | 339 | | CI NHCO ₂ t-Bu | TiCl ₄ , rt | H H (40) | 339 | | O S(O)Me | TsOH, DCE, reflux,
10 min | N + N O H SMe (13) | 73 | | C ₁₇₋₁₈ | | | | | N CHO | | N CHO + N CHO | 316 | | <u>R</u>
H | TIOH CH CL taluana | (60) | | | п | TfOH, CH ₂ Cl ₂ , toluene,
reflux, 16 h | (60) (—) | | | Н
Н | TFA:TfOH (8:2), reflux, 2 h | (82) (—) | | | П | $H_3PW_{12}O_4$ on SiO_2 , toluene, reflux, 20 h | (66) (—) | | | H | 9-BBNOTf, toluene, rt | (47) (25) | | | 3-CI
4-CI | 9-BBNOTf, toluene, rt
9-BBNOTf, toluene, rt | (31) (20)
(32) (22) | | | 3-OMe
4-OMe | 9-BBNOTf, toluene, rt
9-BBNOTf, toluene, rt | (44) (23)
(34) (19) | | | C ₁₈ | 2 22.10 1., 134010, 11 | (10) | | | O C ₆ H ₁₃ | 1. HCO_2H , rt. 24 h
2. NH_3 , $MeOH$, rt | HO (70) | 309 | | O OMe | 1. DIBAL-H, Et₂O, -78°
2. HCO₂H | OMe
OCHO
(68) | 147 | # Table 5. (Continued) | Table: | 5B (Ca | ontinued) | |--------|--------|-----------| | Table 5B (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|--|---|------------| | H N O OMe OMe OMe | HCO₂H, CH₂Cl₂ | H OH OH + | 490
491 | | BnO | Pt cathode, Et₄NOTs
MeOH, 26.8 mA TiCl₄, CH₂Cl₂,
-78° to rt | H ^{CI} | 496 | | MeO O S(O)E | Ac ₂ O, TsOH, toluene,
reflux, 30 min | NSEt (56) MeO OMe | 655 | | C ₁₉ OMe OMe OMe X = H, Br, I | HCO ₂ H, CH ₂ Cl ₂ ,
25°, 4 h | OHCO ₁₀ , H | 489 | | MeO O SEt | (Me ₂ SSMe) [†] BF ₄ ⁷ , CH ₂ C
–40° to rt | O
N A SEt | 655 | | BnO | 1. Pt cathode, Et ₄ NOTs
MeOH, 26.8 mA
2. TiCl ₄ , CH ₂ Cl ₂ ,
-78° to rt | CI | 496 | | O NO OME OME | 1. NaBH ₄ , MeOH, 0°,
10 min
2. HCO ₂ H, rt, 3 h | OCHO OMe (77) OMe | 148 | | PhthN CO ₂ Me | 1. TfOH, Tf ₂ O, CH ₂ Cl ₂ ,
rt,
3 h
2. Nal, MeC(O)Et, rt, 1.5 | h h h h h h h h h h | 313 | Table 5. (Continued) | (Continued) | |-------------| | | | | | Table 5B (Continued) substrate | conditions | product(s) and yield(s) (%) | ref | |---|---|---|------------| | C ₂₀ O S(O)Et CO ₂ Me | TsOH, C ₆ H ₆ , reflux | MeO_2C OTs (80) | 344
655 | | CI NHCO ₂ t-Bu | TiCl ₄ , CH ₂ Cl ₂ , rt | CI
HN N (62-72) | 339 | | MeO ₂ C N | 1. TfOH, Tf ₂ O, CH ₂ Cl ₂ rt, 5.5 h 2. CH ₂ N ₂ 3. Nal, MeC(O)Et, rt, 1 h | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 313 | | C ₂₁ MeO O S(O)Et CO ₂ Et | TsOH, C ₆ H ₆ , reflux | MeO CO ₂ Et (78) | 655 | | BnO | HCO₂H, rt, 21 h | BnO H R = CHO, (70) + R = H, (10) + OHCO \sim N (9) | 151 | | TMS PZ N TMS | Ce(NH₄)₂(NO₃)₆,
MeCN, rt Silica gel | OAc (43) | 177 | | C ₂₂ OAC BZ TMS N TMS | 1. Ce(NH ₄) ₂ (NO ₃) ₆ ,
MeCN. rt
2. Silica gel | OAC (48) | 177 | | MeO S(O)E | ^t CSA, C ₆ H ₆ , reflux | MeO H N O (88)" MeO ₂ C SEt | 656 | | TMS N TMS | Ce(NH₄)₂(NO₃)₆,
MeCN, rt Silica gel | OAc (67) | 177 | | Ph S(O)Et OMe | TsOH, C ₆ H ₆ , reflux,
20 min | Ph N SEt (76) OMe OMe | 656 | Table 5. (Continued) | Table 5B | (Continued) | |----------|-------------| | Table 5B (Continued) | | 1 1/) 1 : 1/) /// | | |-------------------------------|--|-------------------------------|-----| | substrate C ₂₂₋₂₉ | conditions | product(s) and yield(s) (%) | ref | | MeO O S(O)Et | 004 0 11 | MeO R H (96) | 656 | | MeO O S(O)Et | TsOH, C_6H_6 , reflux | MeO OMe (69) | 655 | | Ph S(O)Et CO ₂ Me | TsOH, C_6H_6 , reflux | MeO ₂ C SEt O (61) | 655 | | Ph S(O)Et | TsOH, $C_{\theta}H_{\theta}$, reflux, 20 min | Ph N SEt (76) | 656 | | Ph Ph | TsOH, C ₆ H ₆ , reflux,
20 min | Ph N SEt (70) | 656 | | BnO N Ph | 1. Pt cathode, Et ₄ NOTs
MeOH, 26.8 mA
2. TiCl ₄ , CH ₂ Cl ₂ ,
-78° to rt | BnO O (54) | 496 | | Ph S(O)Et CO ₂ Me | TsOH, C ₆ H ₆ , reflux | MeO ₂ C SEt | 655 | | Ph S(O)Et OMe OMe | TsOH, C_6H_6 , reflux, 1 h | Ph N SEt OMe OMe (50)° | 656 | | Ph S(O)Et OMe | TsOH, C ₆ H ₆ , reflux,
1 h | Ph N (78) OMe OMe | 656 | Table 5. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |---|---|--|-----| | Ph N SEt MeO ₂ C SEt | (Me ₂ SSMe) ⁺ BF ₄ ⁻ , CH ₂ Cl ₂
–40°, 1 h | CO ₂ Me Ph | 655 | | C ₂₇ MeO ₂ C SiMe ₂ Ph NPhth | TiCl ₄ , CH ₂ Cl ₂ , –78° to rt | MeO ₂ C (64) | 657 | | Ph S(O)Et CO ₂ Me MeO ₂ C | TsOH, C ₆ H ₆ , reflux | MeO_2C SEt N | 655 | | C ₂₉ O SEt MeO ₂ C SEt | (Me ₂ SSMe) ⁺ BF ₄ ⁻ , CH ₂ Cl ₂ | MeO_2C N Ph SEt (69) | 655 | | C ₃₄ OTBDMS OHN CO ₂ Bn | NaBH₄, MeOH, -20° HgCl₂, MeCN, H₂O,
40° NaBH₄, MeOH,
CH₂Cl₂, 0° | OTBDMS O H (59) | 182 | ^a The compound was a mixture of stereoisomers. ^b Other isomers were detected by NMR. ^c An unsaturated cyclized product (5%) was also formed. ^d The product containg 5–10% of the unsaturated cyclized product. ^e The compound was a mixture of epimers at C₄. ^f The reaction involved enamide formation. ^g The reaction involved enamide/hydroxylactam formation. ^h The compound was a 2:1 mixture of diastereomers. ^j The compound was a 5:1 mixture of diastereomers. ^k The compound was a 1:1 mixture of diastereomers. ^l Both products were 2:1 mixtures of epimers adjacent to the benzoyl group. ^m The compound was a mixture of olefin isomers. ⁿ The compound was a mixture of four diastereomers. ^e The compound was a 3:1 mixture of diastereomers. **Table 6. Unimolecular Reactions with Alkynes and Allenes** | | substrate | conditions | product(s) and yield(s) (%) | ref | |----------------|-----------|------------------------------|-----------------------------|-----| | C ₈ | ONOH | HCO ₂ H, rt, 72 h | O (high) | 124 | | C9 | O N OH | HCO ₂ H, rt, 90 h | O (45) | 136 | | | O N OH | HCO₂H, rt, 72 h | O (high) | 124 | | | ONOH | HCO₂H, rt, 72 h | (quant.) | 124 | Table 6. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |-------------------|--|---|-----| | O N OEt | HCO₂H, rt, 72 h | O (97) | 46 | | S OH | HCO₂H, rt, 94 h | S N (80) | 429 | | C ₁₀ H | HCO ₂ H, rt, 60 h | H H O (87) | 142 | | O N OH | HF, 0°, 3 h | F Br Br F O (11) | 225 | | | 1. TFA, 20°, 2 h
2. MeOH, reflux, 3 h | CO_2Me H S (60), $\alpha:\beta = 1.2:1$ | 225 | | | 1. TFA, CH ₂ Cl ₂ , 20°, 2 h
2. MeOH, reflux, 3 h | CO ₂ Me Br Br O (26) | 225 | | | TFA, TfOH, CH ₂ Cl ₂ ,
20°, 18 h | Br OTf (70) | 225 | | O N OEt | HCO₂H, rt,
72 h | (97) | 528 | | | 5 days | (92) | 46 | | ONOEt | HCO₂H, rt, 92 h | O (88) | 46 | | O N OEt | HCO ₂ H, rt, 44 h | O (95) | 528 | | OMe | TICI ₄ , CH ₂ CI ₂ , –78° to rt,
33 h | CI (70) | 493 | | S N | HCO₂H, reflux, 93 h | S N (87) | 429 | Table 6. (Continued) | ueu) | | | | |----------------------------|--|--|------------| | substrate | conditions | product(s) and yield(s) (%) | ref | | O N OH | HCO₂H, rt, 72 h | (quant.) | 124 | | ONOH | НСО₂Н | Ac (high) ^a | 124 | | MeQ OMe | HCO₂H, 43°, 120 h | MeO H O (quant.), $\alpha:\beta = 1:1$ | 138 | | O N OH | TFAA, TFA, $\mathrm{CH_2Cl_2}$, reflux, 65 h | HN N (46) | 520 | | C ₁₁ O N OEt Br | TFA, TfOH, CH₂Cl₂,
20°, 24 h | Br OTf TfO Br + N (16) | 225 | | | HF, 0°, 3-12 h | Br F F Br N (6) | 225 | | O N OEt | · · | OCHO OCHO OCHO I OCHO III | 153
528 | | | HCO ₂ H, rt, 18 h
HCO ₂ H, HCO ₂ Na, rt, 18
HCO ₂ H, 76°, 5 h
Cl ₂ CHCO ₂ H, rt, 18 h
TFA, CH ₂ Cl ₂ , 0-5°, 0.5 h
TsOH, C ₆ H ₆ , 80°, 5 h
HCO ₂ H, CH ₂ Cl ₂ , rt, 18 h | 1: (II+III)
36:65 | | | ONOH | HCO ₂ H, reflux, 93 h | O (75) | 429 | | N OMe | TICI ₄ , CH ₂ CI ₂ , –78° to rt,
33 h | CI (82) | 493 | | O N OEt | HCO₂H, rt, 3 days | (81) + H AC (9) | 658
46 | # Table 6. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |--------------------------|--|--|----------------| | O N OEt | | SN S | | | V | HCO_2H , rt, 3 days HCO_2H , rt, 5 days | (100)
(92) | 658
528, 46 | | O N OEt | | QN O | | | | HCO_2H , rt, 3 days HCO_2H , rt, 5 days | O (100) (88) | 658
46 | | ONOH | нсо₂н | H Ac (high) | 124 | | S OH OH | HCO ₂ H, rt, 43°, 280 h | (70) | 429 | | C ₁₂ ONOEt Br | 1. TFA, 20°, 2 h
2. MeOH, reflux, 3 h | CO ₂ Me H $\frac{3}{3}$ (60), α : β = 1.2:1 | 226 | | | 1. TFA, CH ₂ Cl ₂ , 20°, 2 h
2. MeOH, reflux, 3 h | CO_2Me H $CO_$ | 226 | | ONOEt | HCO ₂ H, rt, 72 h | H Ac (78) | 658
46 | | O N OEt | HCO ₂ H, rt, 72 h | , Ac
N (92) | 658
46 | | O N OEt | HCO₂H, rt, 14 days | (90) | 46
528 | | O N OH TMS | TFA, CH ₂ Cl ₂ , 0°, 2 h | (70-90) | 188
204 | | S N OEt | HCO₂H, rt, 7 days | S N (45) | 610 | Table 6. (Continued) | ed) | | | |
---|--|--------------------------------------|------------| | substrate C ₁₃ | conditions | product(s) and yield(s) (%) | ref | | O N OH | HF, 0°, 3-12 h | Br F (84) | 226 | | Br | TFA, TfOH, CH ₂ Cl ₂ ,
20°, 24 h | Br OTf (60) | 226 | | ONOEt | HCO₂H, rt, 72 h | Ac
H (88) | 658
46 | | O NOEt | HCO₂H, rt, 18 h | 0 + 0 N OCHO OH | 153 | | O N OEt | HCO₂H, rt, 18 h | (75) OCHO (19) OH | 153 | | MeO OMe | HCO₂H, 30°, 13 days | MeO H (quant.), $\alpha:\beta=1:100$ | 138
216 | | N CO ₂ Et | нсо₂н | CO ₂ Et | 205 | | | TiCl ₄ | CO ₂ Et (24) | 205 | | O N OH TMS | TFA, CH ₂ Cl ₂ , 0°, 1 h | (85) | 188 | | HO ^N TMS | HCO₂H, 0°-rt, 10 min | CO ₂ Me (74) | 221 | | MeO ₂ C N CO ₂ Me | 1. MsCl, Et ₃ N, MeCN, rt
2. Reflux, 3 h | CO_2Me (42) | 189 | | C ₁₄ TMS CO ₂ Me | 1. NaBH ₄ , EtOH, –20°
2. HCO ₂ H, rt | MeO ₂ C (70) | 208 | Table 6. (Continued) | ed) substrate | conditions | product(s) and yield(s) (%) | ref | |---|--|---|------------| | substrate | Conditions | product(s) and yield(s) (76) | rei | | O N OAC CO ₂ i-Pr | SnCl ₄ , CH ₂ Cl ₂ , 0°, 6 h | O N CI (12) | 223 | | O N OH TMS | TFA, CH ₂ Cl ₂ , 0°, 2 h | O (90) | 204 | | MeO ₂ C N CO ₂ Me | 1. MsCl, Et ₃ N, MeCN, rt
2. Reflux, 3 h | MeO ₂ C N (—) | 189 | | N TMS
N CO₂Me | HCO ₂ H
BF ₃ •Et ₂ O | CO ₂ Me (42) (62) | 205 | | O N OH TMS | TFA, CH ₂ Cl ₂ , 0°, 2 h | (95) | 188 | | C ₁₅ Ph HO N N Me | HCO ₂ H, rt, 45 h | O Ph
N (37) | 127 | | O OH | 1. MeCN, carbon anode, $ Et_4 NBF_4, \ K_2 CO_3, \\ 15.0 \ mA, \ 3.18 \ F/mol \\ 2. \ TiCl_4, \ CH_2 Cl_2, \ -78^\circ \ to \ rt $ | MeO ₂ C O (24) | 220 | | ON OAC CO ₂ /-Pr | SnBr ₄ , CH ₂ Cl ₂ , 0°-rt,
6 h | <i>i</i> -PrO ₂ c Br (51) ^b | 223 | | ONOEt | HCO ₂ H, rt, 18 h | (quant.) | 153 | | HO N TMS | HCO ₂ H, 0°-rt, 10 min | (27) | 221 | | O N OH Me | HCO ₂ H, rt, 72 h | O Ph
N (95) | 127
132 | | C ₁₆ OEt Ph | 1. HCO ₂ H, rt, 144 h
2. HCl | H Bz (quant.), α :β = 45:55 | 218 | ## Table 6. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |---|--|--|-------------------| | O N OEt SPh | 1. HCO ₂ H, rt, 72 h
2. HCl | O SPh (80), α:β = 1:4 | 218 | | HO CO ₂ f-Bu | HCO ₂ H, 0°-rt, 10 min | CO ₂ t-Bu (25) | 221 | | C ₁₆₋₁₇ | HCO₂H | R H (quant.) Me (quant.) | 124 | | C ₁₇ HO N O Bn | | OCHO OCHO | | | JII | HCO₂H, 85°, 18 h
HCO₂H, Nal, 85°, 18 h | (79) (0) 52
(34) (42) | 8, 529
529 | | Eto N O Bn | HCO ₂ H, 85°, 2.5 days | HO (52) | 528 | | ON OAC CO ₂ i-Pr | $\begin{array}{ccc} \operatorname{SnX_4}, \operatorname{CH_2Cl_2}, 0^{\circ}\text{-rt} \\ & \\ \frac{\operatorname{X}}{\operatorname{Br}} & \frac{\operatorname{Time}}{\operatorname{8}\operatorname{h}} \\ & \\ \operatorname{Cl} & \operatorname{4}\operatorname{h} \end{array}$ | N
i-PrO ₂ C TMS
(70)
(70) | 223 | | MeO ₂ C N OMe CO ₂ Me | TICI ₄ , CH ₂ CI ₂ , –78° or rt | $\begin{array}{c} & & \\$ | 220
391
496 | | OH O | HCO ₂ H, 20 days, 43° | O (62) | 156 | | EtO N O TMS | HCO ₂ H, NH ₃ , MeOH | HO (87) + | 219 | | MeO OMe OMe ONE OME | HCO ₂ H, rt, 120 h | OMe OMe OMe OMe OMe (85) | 132 | Table 6. (Continued) | e 6. (Conti | substrate | conditions | product(s) and yield(s) (%) | ref | |-------------|---|---|--|------------| | | C ₁₈ OOEt Ph | HCO₂H, rt, 18 h | (quant.) | 129
131 | | | HO ^{ser} N
Ts | HCO₂H, 0°-rt, 10 min | N Ts (75) | 221 | | | MeO ₂ C N CO ₂ Me | TiCl ₄ , CH ₂ Cl ₂ , -78° to rt | CI CO_2Me CO_2Me | 220 | | | OH
S N | HCO₂H, 43°, 451 h | 0
5
N
(75) | 156 | | | OAc BuO ₂ C N CO ₂ Me TMS | Et ₂ AlCl, CH ₂ Cl ₂ ,
0°-rt, 2 h | BuO_2C N CO_2Me (50) | 189 | | | N OEt CO ₂ t-Bu | SnCl ₄ , CH ₂ Cl ₂ ,
-23°, 1-2 h | (90), $\alpha:\beta = 2.2:1$ | 224 | | | TMS
Eto N
H | HCO ₂ H, 0.5 h | HN (91) | 539 | | | EtO N WCp(CO) ₃ | BF ₃ •Et ₂ O, Et ₂ O,
-78° to rt | 0
N
(64)
WCp(CO) ₃ | 659 | | | C ₁₉ HEIO ^{NN} N O TMS | HCO₂H, 0.5 h | (100) | 539 | | | MeO NO WCp(CO) ₃ | BF ₃ •Et ₂ O, Et ₂ O,
-78° to rt, 3 h | (66)
WCp(CO) ₃ | 659 | | | CO ₂ Bn | HCO ₂ H, 85°, 36 h | CO ₂ Bn | 175 | Table 6. (Continued) | ued) | | | | |---|---
---|------------| | substrate | conditions | product(s) and yield(s) (%) | ref | | N OEt CO ₂ t-Bu | SnCl ₄ , CH ₂ Cl ₂ , –78°,
1 h | O N H (90) | 224 | | N N N N N N N N N N N N N N N N N N N | SnCl ₄ , CH ₂ Cl ₂ ,
-23°, 1 h | 0 H (69) | 224 | | OAC BuO ₂ C N CO ₂ Me TMS | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
0°-rt, 2 h | BuO ₂ C N (50) | 189 | | EtO NO WCp(CO)3 | BF ₃ *Et ₂ O, Et ₂ O,
–78° to rt | 0
N
(71)
WCp(CO) ₃ | 659 | | MeO WCp(CO) ₃ | BF ₃ •Et ₂ O, Et ₂ O,
–78° to rt | (62)
WCp(CO) ₃ | 659 | | C ₁₉₋₂₀ OEt TMS Ph N | | Ph + O N R H II | 537 | | R
Me
OEt
OEt | HCO ₂ H, rt, 17 h
HCO ₂ H, rt, 17 h
Et ₂ AICI, CH ₂ CI ₂ , 0° | I II I:II (68) (0) (—) (—) (—) 1:1 (55) (0) (—) | | | C ₂₀ MeO SPh | HCO ₂ H, rt, 15 h | PhS O (80) | 611
612 | | Ph
ON OAC
CO ₂ i-Pr | $\begin{array}{cc} \text{SnX}_4, \ \text{CH}_2\text{Cl}_2, \ 0^\circ \\ \\ \hline \frac{\text{X}}{\text{Br}} & \frac{\text{Time}}{4 \text{ h}} \\ \text{Cl} & 6 \text{ h} \\ \end{array}$ | i-PrO ₂ C Ph (51) (33) | 223 | | Bn N OAc OCO ₂ Me | TiCl ₄ , CH ₂ Cl ₂ | Bn CO_2Me CI CI | 428 | | PhS TMS EtO NO H | HCO₂H, rt, 18 h | HN (87) | 522 | ## Table 6. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |--|--|---|------------| | TMS
N OEt
CO ₂ t-Bu | SnCl ₄ , CH ₂ Cl ₂ ,
-23°, 1 h | TMS $(86), \alpha:\beta = 1.75:1$ | 224 | | EtO _N N TMS | HCO ₂ H, rt, 17 h | Ph N (74) | 537 | | Eto NO TBDMS | HCO₂H, rt, 24 h | HN (85) | 522 | | EtO NO D | HCO ₂ H, rt, 30 min | Bn (82) | 202 | | C ₂₁ | | Bn | | | EtO ^N NO

 Bn | | | | | ы | TFA, rt, 0.5-1 h
HCO ₂ H, rt, 0.5 h | (88)
(97) | 203
522 | | EtO NO Bh | HCO₂H, rt, 0.5 h | Bn (98) | 202 | | EtO ₂ C CO ₂ Et TMS | нсо ₂ н | $O = \begin{pmatrix} CO_2Et \\ CO_2Et \\ H \\ H \end{pmatrix}$ (78) | 395 | | TMS N N CO ₂ f-Bu | SnCl ₄ , CH ₂ Cl ₂ ,
-23°, 1 h | TMS $(83), \alpha:\beta = 30:1$ | 224 | | C ₂₁₋₂₄ NOEt RO RO RO RO RO RO RO RO RO R | SnCl ₄ , CH ₂ Cl ₂ ,
-23°, 2 h | H H N N C1 Ph CO ₂ R (65) (25) (83) (0) | 224 | | C ₂₂ N N OMe CO ₂ t-Bu | SnCl ₄ , CH ₂ Cl ₂ ,
-23°, 1 h | Ph $(91), \alpha; \beta = 1:3$ | 224 | | EtO NO Bn | HCO₂H, rt, 0.5-1 h | Bn N (93) | 203 | Table 6. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |---|--|--|-----| | OEt TMS | HCO₂H, rt, 1 h | EtO ₂ C ^N Bn | 537 | | N OEt CO ₂ t-Bu | SnCl ₄ , CH ₂ Cl ₂ ,
-23°, 1 h | Ph H (80) | 224 | | EtO WCp(CO) ₃ | BF ₃ •Et ₂ O, Et ₂ O,
-78° to rt | (62)
WCp(CO) ₃ | 659 | | MeO NO WCp(CO) ₃ | BF ₃ •Et ₂ O, Et ₂ O,
-78° to rt | O
N
(53)
WCp(CO) ₃ | 659 | | Bn N TMS O N OAC O CO ₂ Me | BF ₃ •Et ₂ O, CH ₂ Cl ₂ | $ \begin{array}{cccc} & & & & & & & \\ & & & & & & \\ O & & & & & \\ & & & & & \\ O & & & & & \\ & & & & & \\ & & & & & \\ & & & & $ | 428 | | MeO OMe | HCO ₂ H, rt, 65 h | OMe
OMe
OMe
(87) | 132 | | N OEt CO ₂ t-Bu | SnCl ₄ , CH ₂ Cl ₂ ,
-23°, 1 h | (98)
O Ph | 224 | | C ₂₃ EtO NO TMS | | Bn N- | 203 | | EtO ₂ C SO ₂ Ph TMS N NOi-Pr | HCO_2H , rt, 0.5-1 h $SnCl_4$, CH_2Cl_2 HCO_2H | (<10)
(81)
CO ₂ Et
H w SO ₂ Ph
(80) | 395 | | MeO NO WCp(CO) ₃ | BF ₃ •Et ₂ O, Et ₂ O,
–78° to rt | 0
N
H (54)
WCp(CO) ₃ | 659 | | C ₂₄ N OEt CO ₂ t-Bu | SnCl ₄ , CH ₂ Cl ₂ ,
–78°, 1 h | Ph (87) | 224 | Table 6. (Continued) | substrate | conditions | product(s) and yield(s) (%) | ref | |-------------------------------|---|------------------------------------|-----| | C ₂₅ TMS EtO NO Bn | HCO₂H, 0.5 h | Bn N (97) | 539 | | PhO O N OAC | SnCl ₄ , CH ₂ Cl ₂ ,
0°-rt, 6 h | 0 ₂ N (61) ^d | 223 | ^a Other isomers were detected by NMR. ^b The compound was a 13:5:1 mixture of diastereomers. ^c The compound was a 1.2:1 mixture of diastereomers. ^d The compound was a 5:1 mixture of diastereomers. **Table 7. Unimolecular Reactions with Miscellaneous Carbon Nucleophiles** | | substrate | conditions | product(s) and yield(s) (%) | ref | |-----------------|--|--|--|-----| | C ₁₂ | O N OAC CO ₂ Me | TiCl ₄ , CH ₂ Cl ₂ , rt, 3 h | CO ₂ Me
N (71) | 336 | | | O N OMe MeO ₂ C CO ₂ Me | TiCl ₄ , CH ₂ Cl ₂ , rt, 3 days | $ \begin{array}{c} \text{MeO}_2\text{C} & \text{CO}_2\text{Me} \\ \text{N} & \text{(60)} \end{array} $ | 535 | | | MeO N CO ₂ Me | AICI ₃ , CH ₂ CI ₂ , 0°, 4 h | MeO ₂ C CO ₂ Me (90) | 532 | | C ₁₃ | O NOMe CO ₂ Me CO ₂ Me | TiCl ₄ , CH ₂ Cl ₂ , rt, 3 days | MeO ₂ C CO ₂ Me (76) | 535 | | | O NOH CO ₂ Et | HCO ₂ H, H ₂ O, rt, 18 h | CO ₂ Et O (97) | 531 | | , | O H | TsOH, toluene, heat | 0 (83) | 229 | | Me | O ₂ Me | HCI, MeOH, -45°, 5 h | CO ₂ Me
N
Ac (93) | 533 | | C ₁₄ | O N OMe CO ₂ Me CO ₂ Me | TiCl ₄ , CH ₂ Cl ₂ , rt, 3 days | $ \begin{array}{c} MeO_2C & CO_2Me \\ & N & (77) \end{array} $ | 535 | Table 7. (Continued) | ıed) | | | | |---|---|--|------------| | substrate Me ₃ Sn— | conditions | product(s) and yield(s) (%) | ref | | ON
CO ₂ t-Bu | 1. LiEt ₃ BH, THF, -78°
2. TFA, CH ₂ Cl ₂ , 0° | (82)
N
CO ₂ <i>t</i> -Bu | 540 | | Me ₃ Sn OH CO ₂ f-Bu | TFA, CH ₂ Cl ₂ | OH (79) | 541 | | SePh SePh CO ₂ Et | Rh ₂ (OAc) ₄ , C ₆ H ₆ , CH ₂ Cl ₂ , reflux, 10 min | H CO ₂ Et N (36) | 242 | | MeO ^{ner} NOH | TsOH, CH₂Cl₂, MeOH | $ \begin{array}{c} $ | 541 | | $\begin{array}{c} \text{SPh} \\ \\ N \\ \\ O \end{array}$ | $Rh_2(OAc)_4$, C_6H_6 , heat, 15 min | CO ₂ Et W SPh | 241 | | CO ₂ Me
O
N | BF ₃ •Et ₂ O, CH ₂ Cl ₂ ,
50°, 2 h | MeO ₂ C N (82.5) | 532 | | $\begin{array}{c} \mathbf{C_{17}} \\ \text{Me}_3 \text{Sn} \\ \hline \\ \text{NH} \\ \text{CO}_2 \text{f-Bu} \end{array}$ | 1. LiEt ₃ BH, THF, –78°
2. TFA, CH ₂ Cl ₂ , 0° | $ \begin{array}{c c} H \\ N \\ H \\ CO_2 t - Bu \end{array} $ (86) | 540 | | ON OH Me | , | Ne-N + O Ph | 127
132 | | | H₂O, dioxane, H₂SO₄
HCl, MeOH, 21 h | (61) (17)
(78) (0) | | | C ₁₉ MeO ₂ C CO ₂ Me Ph Oi-Pr | TiCl ₄ | $O = \begin{array}{c} CO_2Me \\ H \\ CO_2Me \end{array} $ (79) | 395 | | Me ₃ Sn——Ph | 1. LiEt ₃ BH, THF, –78°
2. TFA, CH ₂ Cl ₂ , 0° | Ph $CO_2 t$ -Bu (81) | 540 | | c_{23} Me_3Sn CO_2Me CO_2f -Bu | 1. LiEt ₃ BH, THF, –78°
2. TFA, CH ₂ Cl ₂ , 0° | CO ₂ Me (65) | 540 | ## Table 7. (Continued) | - | substrate | conditions | product(s) and yield(s) (%) | ref | |---|--------------------------------|---|--|-----| | C ₂₄ | CO ₂ Me | | CO ₂ Me | | | Me ₃ Sn | ` | 1. LiEt ₃ BH, THF, -78° | (63) | 540 | | - 0 | N √ Ph | 2. TsOH, CH ₂ Cl ₂ , | Y Ph | | | | CO₂ <i>t</i> -Bu | MeOH, rt | ∵
CO₂ <i>t-</i> Bu | | | | | | | | | | CO₂Me | | CO ₂ Me | | | le₃Sn ∕ | | 1. LiEt ₃ BH, THF, -78° | | 540 | | 0 | Ph | 2. TsOH, CH ₂ Cl ₂ , MeOH, | Ph (84) | | | J | CO ₂ <i>t</i> -Bu | rt | iγ
CO₂ <i>t</i> -Bu | | | 25 | 2 | | - | | | ,0_, | <u>,</u> , | | | | | | N | TiCl ₄ , AcOH, CH ₂ Cl ₂ , rt | | 641 | | | | | ₹
\vvCO ₂ Bn | | | | OBn | | 7 002511 | | | | őőő | | (97), cis:trans = 1:4.4 | | | | | | 0. ^ ^ | | | | | NIS, TiCl ₄ , MeOH, rt | (II) NO | 641 | | | | | (71) | | | | | | ັ້ CO₂Bn | | | 25-28 | | | Ö | | | 0 | | | O / | | | | Ņ ^{_Bn} | | N H CO ₂ Me | | | ~ | JmOH | HCI, MeOH, reflux,
0.5 h | | 230 | | N | CO₂R | U.5 II | N H | | | Ac | H | | ή Η
Ac | | | | Me | | (quant.) | | | | <i>t</i> -Bu | | (70) | | | 27 | | | | | | 0 | | | O D- | | | u_N_N. | _Bn | 1. TMSCH ₂ CO ₂ Et, Bu ₄ NF, | Bn N Bn | 237 | | H=> h | OEt | THF, -78° to rt, 18 h
2. TMSOTf, CH ₂ Cl ₂ , | H CO ₂ Me | | | `s^ | CO ₂ Me | -78°, 1 h | S T | | | | 0 | | O (78), $\alpha:\beta = 1.5:1$ | | | 0, | D. | | O. /Bn | | | <i>/</i> | -N Bn | | N H | | | ~ | LmOH
Bn | HCO ₂ H, rt, 18 h | (quant.) | 230 | | $\langle \downarrow \downarrow{N} \rangle$ | ≺ _H | | N H | | | À | 0 | | N H
Ac | | | >30 | | | | | | Me₃Sn—ੑ | | | x-7 | | |) | OTBDPS | 1. LiEt ₃ BH, THF | OTBDPS (66) | 541 | | 0 | Ņ | 2. TFA, CH ₂ Cl ₂ | N

CO ₂ t-Bu | | | | CO ₂ t-Bu | | 2 | | | 31 | | | | | | Me ₃ Sn | | 1. LiEt ₃ BH, THF | | | | 0/ | OTBDPS | 2. TsOH, CH ₂ Cl ₂ , | OTBDPS (90) | 541 | | |
CO ₂ t-Bu | MeOH |
CO₂ <i>t</i> -Bu | | | 32 | | | | | | | 一、 | 1. LiEt ₃ BH, THF | $\langle \cdot \rangle$ | | | | | | \ / / | | | Me₃Sn—∕ | .OTBDPS | 2. TFA, CH ₂ Cl ₂ | OH (72) | 541 | | Me ₃ Sn— | OTBDPS
CO ₂ t-Bu | 2. TFA, CH ₂ Cl ₂
3. Bu ₄ NF, THF | OH (72)

 CO ₂ t-Bu | 541 | **Table 7. (Continued)** | substrate | conditions | product(s) and yield(s) (%) | ref | |--|---|--|-----| | C ₃₃ Me ₃ Sn——CO ₂ Me OTBDPS CO ₂ t-Bu | 1. LiEt ₃ BH, THF
2. TFA, CH ₂ Cl ₂ |
CO_2Me OTBDPS $CO_2\ell$ -Bu CO_2 | 213 | | Me_3Sn OTBDPS $CO_2\ell$ -Bu | 1. LiEt ₃ BH, THF
2. TFA, CH ₂ Cl ₂ | OTBDPS (62) | 541 | | \mathbf{C}_{35} $\mathrm{Me}_3\mathrm{Sn}$ $\mathrm{CO}_2\mathrm{Me}$ OTBDPS $\mathrm{CO}_2t\text{-Bu}$ | 1. LiEt₃BH, THF
3. 2. TFA, CH₂Cl₂ | CO ₂ Me OTBDPS CO ₂ t-Bu (86) | 213 | | MeO NH H O | HCO₂H, rt-60° | MeO N R R R' (51) Me i-Pr (44) | 543 | | SH O Bn OEt | HCO ₂ H, rt-60° | R N N Bn R PhNH (18) | 543 | ^a TentaGel-OH resin was used for the solid-phase reaction. ### 7. References - (1) Blicke, F. F. Org. React. 1942, 1, 303.(2) Tramontini, M. Synthesis 1973, 703. - Reichert, B. Die Mannich Reaktion; Springer-Verlag: Berlin, - Hellmann, H.; Opitz, G. α-Aminoalkylierung, Verlag Chemie, Weinheim, 1960. - Thompson, B. B. J. Pharm. Sci. 1968, 57, 715. Whaley, W. M.; Govindachari, T. R. Org. React. 1951, 6, 151. - (7) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797. - Czerwinski, K. M.; Cook, J. M. Adv. Heterocycl. Nat. Prod. Synth. **1996**, 3, 217 Shamma, M. The Isoquinoline Alkaloids: Chemistry and Phar- - macololgy; Academic Press: New York, 1972. Kametani, T.; Fukumoto, K. Chem. Heterocycl. Compd. 1981, - *38* (1), 139. - (11) Zaugg, H. E.; Martin, W. B. Org. React. 1965, 14, 52. - (12) Zaugg, H. E., Synthesis 1970, 49. (13) Zaugg, H. E. Synthesis 1984, 85. (14) Zaugg, H. E. Synthesis 1984, 181. (15) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367. - (16) Hiemstra, H.; Speckamp, W. N. The Alkaloids 1988, 32, 271. (17) Hiemstra, H.; Speckamp, W. N. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 1047-1082. - (18) Hart, D. J. Alkaloids: Chem. Biol. Perspect. 1988, 6, 227. - (19) de Koning, H.; Speckamp, W. N. In Stereoselective Synthesis, Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Verlag: Stuttgart, 1995; Vol. E 21b, pp 1953–2009. (20) Georg, G. I.; Ravikumar, V. T. In *The Organic Chemistry of* - β-Lactams; Georg, G. I., Ed.; VCH: New York, 1993; Chapter 6, pp 295-368. - (21) Belleau, B. J. Am. Chem. Soc. 1953, 75, 5765. - (22) Belleau, B. Chem. Ind. (London) 1956, 410. - (23) Belleau, B. Can. J. Chem. 1957, 35, 651. - (24) Belleau, B. Can. J. Chem. 1957, 35, 663. - (25) Belleau, B. Can. J. Chem. 1957, 35, 673. - (26) Mondon, A. Angew. Chem. 1956, 68, 578. (27) Mondon, A. Chem. Ber. 1959, 92, 1461. - (28) Mondon, A. Chem. Ber. 1959, 92, 1472. - (29) Mondon, A.; Hasselmeyer, G.; Zander, J. Chem. Ber. 1959, 92, - (30) Mondon, A.; Hasselmeyer, G. Chem. Ber. 1959, 92, 2552. - (31)Van Tamelen, E. E.; Shamma, M.; Burgstahler, A. W.; Wolinsky, J.; Tamm, R.; Aldrich, P. E. J. Am. Chem. Soc. 1958, 80, 5006. - (32) Boekelheide, V.; Müller, M.; Jack, J.; Grossnickle, T. T.; Chang, M. J. Am. Chem. Soc. 1959, 81, 3955 - (33) Müller, M.; Grossnickle, T. T.; Boekelheide, V. J. Am. Chem. Soc. 1959, 81, 3959 - Burgstahler, A. W.; Bithos, Z. J. J. Am. Chem. Soc. 1959, 81, - Funke, W.; Hornig, K.; Möller, M. H.; Würthwein, E.-U. Chem. Ber. **1993**, 126, 2069. - Yamamoto, Y.; Nakada, T.; Nemoto, H. J. Am. Chem. Soc. 1992, 114, 121. - Jochims, J. C.; Glocker, M. O.; Hofmann, J.; Fischer, H. *Tetrahedron* **1991**, *47*, 205. - Wanner, K. T.; Praschak, I.; Nagel, U. Arch. Pharm. (Weinheim) **1990**, *323*, 335. - Würthwein, E.-U.; Kupfer, R.; Kaliba, C. Angew. Chem., Int. Ed. Engl. 1983, 22, 252 - (40) Crow, G. R.; Pyun, C.; Leitz, C.; Marakowski, J. J. Org. Chem. 1974, 39, 2449 - Bose, A. K.; Spiegelman, G.; Manhas, M. S. Tetrahedron Lett. 1971, 3167. - Nortey, S. O.; McComsey, D. F.; Maryanoff, B. E. Heterocycles **1993**, *35*, 1075. - Wijnberg, J. B. P. A.; de Boer, J. J. J.; Speckamp, W. N. Recl. Trav. Chim., Pays-Bas 1978, 97, 227. - (44) Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R. J. Am. Chem. Soc. 1963, 85, 207. - Maryanoff, B. E.; McComsey, D. F.; Duhl-Emswiler, B. A. *J. Org. Chem.* **1983**, *48*, 5062. - Schoemaker, H. E.; Boer-Terpstra, T.; Dijkink, J.; Speckamp, W. N. *Tetrahedron* **1980**, *36*, 143. - (47) Malmberg, M.; Nyberg, K. Acta Chem. Scand. 1981, B35, 411. - (48) D'Oca, M. G. M.; Moraes, L. A. B.; Pilli, R. A.; Eberlin, M. N. J. Org. Chem. 2001, 66, 3854. - (49) Kurihara, H.; Mishima, H. Heterocycles 1982, 17, 191. - (50) Mondon, A.; Aumann, G.; Oelrich, E. Chem. Ber. 1972, 105, 2025. - (51) Sasaki, T.; Eguchi, S.; Okano, T.; Nakamura, N. J. Chem. Soc., Perkin Trans. 1 1984, 1863. - (52) Benz, G.; Riesner, H.; Winterfeldt, E. *Chem. Ber.* **1975**, *108*, 248. - Lounasmaa, M.; Berner, M.; Brunner, M.; Suomalainen, H.; Tolyanen, A. *Tetrahedron* **1998**, *54*, 10205. - Node, M.; Nagasawa, H.; Fuji, K. J. Am. Chem. Soc. 1987, 109, 7901. - (55)Lounasmaa, M.; Berner, M.; Tolvanen, A. Heterocycles 1998, 48, 1275 - (56) Johnson, W. S. Acc. Chem. Res. 1968, 1, 1. (57) Van Tamelen, E. E. Acc. Chem. Res. 1975, 8, 152. (58) Johnson, W. S. Angew. Chem., Int. Ed. Engl. 1976, 15, 9. (59) Mondon, A.; Zander, J.; Menz, H.-U. Justus Liebigs Ann. Chem. **1963**, *667*, 126. - (60)Mondon, A.; Hansen, K. F.; Boehme, K.; Faro, H. P.; Nestler, H. J.; Vilhuber, H. G.; Böttcher, K. Chem. Ber. 1970, 103, 615. - (61) Mondon, A. Chem. Ber. 1971, 104, 2960. - (62) Kametani, T.; Agui, H.; Fukumoto, K. Chem. Pharm. Bull. 1968, 16, 1285. - (63) Ito, K.; Haruna, M.; Furukawa, H. J. Chem. Soc., Chem. Commun. 1975, 681. - Wilkens, H. J.; Troxler, F. Helv. Chim. Acta 1975, 58, 1512. - (65) Haruna, M.; Ito, K. J. Chem. Soc., Chem. Commun. 1976, 345. - (66) Bergmann, E. D.; Migron, Y. Tetrahedron 1976, 32, 2847. - Maryanoff, B. E.; McComsey, D. F. Tetrahedron Lett. 1979, 3797. (68) Tsuda, Y.; Sakai, Y.; Kaneko, M.; Ishiguro, Y.; Isobe, K. Taga, .; Sano, T. Heterocycles 1981, 15, 431. - (69) Tsuda, Y.; Sakai, Y.; Sano, T. Heterocycles 1981, 15, 1097.(70) Tsuda, Y.; Sakai, Y.; Kaneko, M.; Akiyama, K.; Isobe, K. Heterocycles 1981, 16, 921. - (71) Ju-ichi, M.; Fujitani, Y.; Ando, Y. Chem. Pharm. Bull. 1981, 29, - (72)Tamura, Y.; Maeda, H.; Akai, S.; Ishibashi, H. Tetrahedron Lett. **1982**, 23, 2209. - Ishibashi, H.; Sato, K.; Ikeda, M.; Maeda, H.; Akai, S.; Tamura, - Y. J. Chem. Soc., Perkin Trans. I 1985, 605. (74) Ishibashi, H.; Harada, S.; Sato, K.; Ikeda, M.; Akai, S.; Tamura, Y. Chem. Pharm. Bull. 1985, 33, 5278. - (75) Isobe, K.; Mohri, K.; Maeda, M.; Takeda, T.; Tsuda, Y. Chem. - Pharm. Bull. 1987, 35, 2602. (76) Isobe, K.; Mohri, K.; Toyokawa, Y.; Takeda, N.; Taga, J.; Tsuda, Y. Chem. Pharm. Bull. 1987, 35, 2618. - Chem. Pharm. Bull. 1987, 33, 2016. Isobe, K.; Mohri, K.; Tokoro, K.; Fukushima, C.; Higuchi, F.; Taga, J.; Tsuda, Y. Chem. Pharm. Bull. 1988, 36, 1275. Ishibashi, H.; Sato, K.; Takahashi, M.; Hayashi, M.; Ikeda, M. Heterocycles 1988, 27, 2787. - Ishibashi, H.; Sato, K.; Takahashi, M.; Hayashi, M.; Ishikawa, K.; Ikeda, M. *Chem. Pharm. Bull.* **1990**, *38*, 907. - Tsuda, Y.; Saki, Y.; Nakai, A.; Kaneko, M.; Ishiguro, Y.; Isobe, K.; Taga, J.; Sano, T. *Chem. Pharm. Bull.* **1990**, *38*, 1462. - (81) Hosoi, S.; Ishida, K.; Sangai, M.; Tsuda, Y. Chem. Pharm. Bull. **1992**, *40*, 3115. - Tsuda, Y.; Hosoi, S.; Ishida, K.; Sangai, M. Chem. Pharm. Bull. (82)**1994**, 42, 204. - (83) Marino, J. P., Jr.; Osterhout, M. H.; Price, A. T.; Semones, M. A.; Padwa, A. J. Org. Chem. 1994, 59, 5518. (84) Tsuda, Y.; Ohshima, T.; Hosoi, S.; Kaneuchi, S.; Kiuchi, F.; Toda, J.; Sano, T. Chem. Pharm. Bull. 1996, 44, 500. (85) Padwa, A.; Kappe, C. O.; Reger, T. S. J. Org. Chem. 1996, 61, 440. - Padwa, A.; Brodney, M. A.; Marino, J. P., Jr.; Osterhout, M. H.; Price, A. T. *J. Org. Chem.* **1997**, *62*, 67. Padwa, A.; Hennig, R.; Kappe, C. O.; Reger, T. S. *J. Org. Chem.* (86) - **1998**, *63*, 1144. - Padwa, A. Chem. Commun. 1998, 1417. - Van Tamelen, E. E.; Shamma, M.; Burgstahler, A. W.; Wolinsky, J.; Tamm, R.; Aldrich, P. E. J. Am. Chem. Soc. 1969, 91, 7315 - (90) Burgstahler, A. W.; Bithos, Z. J. J. Am. Chem. Soc. 1960, 82, 5466. - (91)Van Tamelen, E. E.; Dolby, L. J.; Lawton, R. G. Tetrahedron Lett. 1960, No. 19, 30. - Kuehne, M. E. J. Am. Chem. Soc. 1964, 86, 2946. - (93) Kalaus, G.; Györy, P.; Kajtár-Peredy, M.; Radics, L.; Szabó, L.; Szántay, C. *Chem. Ber.* **1981**, *114*, 1476. (94) Atta-ur-Raman; Sultana, M. *Z. Naturforsch.* **1982**, *37b*, 793 - Schultz, A. G.; Malachowski, W. P.; Pan, Y. J. Org. Chem. 1997, 62, 1223. - (96) Atta-ur-Raman; Beisler, J. A.; Harley-Mason, J. Tetrahedron 1980, 36, 1063. - Takano, S.; Chiba, K.; Yonaga, M.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1980, 616. - Takano, S.; Yonaga, M.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1981, 1153. - (99) Node, M.; Nagasawa, H.; Fuji, K. J. Org. Chem. 1990, 55, 517. - (100) Schultz, A. G.; Pettus, L. J. Org. Chem. 1997, 62, 6855. (101) Wee, A. G. H.; Yu, Q. Tetrahedron Lett. 2000, 41, 587. (102) Wee, A. G. H.; Yu, Q. J. Org. Chem. 2001, 66, 8935. (103) Pancrazi, A.; Kervagoret, J.; Khuong-Huu, Q. Tetrahedron Lett. **1991**, 32, 4483. - (104) Takano, S.; Hatakeyama, S.; Ogasawara, K. J. Am. Chem. Soc. - 1979, 101, 6414. (105) Takano, S.; Takahashi, M.; Ogasawara, K. J. Am. Chem. Soc. 1980, 102, 4282. - Kametani, T.; Suzuki, T.; Sato, E.; Nishimura, M.; Unno, K. J. - Chem. Soc., Chem. Commun. 1982, 1201. (107) Pancrazi, A.; Kervagoret, J.; Khuong-Huu, Q. Synlett 1991, 589. - (108)Ando, M.; Büchi, G.; Ohnuma, T. J. Am. Chem. Soc. 1975, 97, 6880. - Büchi, G.; Matsumoto, K. E.; Nishimura, H. J. Am. Chem. Soc. **1971**, 93, 3299. - (110)Wenkert, E.; Orito, K.; Simmons, D. P.; Ardisson, J.; Kunesch, N.; Poisson, J. J. Org. Chem. 1983, 48, 5006. - Yamada, K.; Aoki, K.; Kato, T.; Uemura, D.; Van Tamelen, E. E. J. Chem. Soc., Chem. Commun. 1974, 908. - (112) Ungemach, F.; Cook, J. M. Heterocycles 1978, 9, 1089. - Van Tamelen, E. E.; Webber, J.; Schiemenz, G. P.; Barker, W. Bioorg. Chem. 1976, 5, 283. - Maryanoff, B. E.; McComsey, D. F.; Almond, H. R., Jr.; Mutter, M. S.; Bemis, G. W.; Whittle, R. R.; Olofson, R. A. *J. Org. Chem.* **1986**, *51*, 1341. - Maryanoff, B. E.; McComsey, D. F.;
Gardocki, J. F.; Shank, R. P.; Costanzo, M. J.; Nortey, S. O.; Schneider, C. R.; Setler, P. E. *J. Med. Chem.* **1987**, *30*, 1433. - (116) Maryanoff, B. E.; McComsey, D. F.; Inners, R. R.; Mutter, M. S.; Wooden, G. P.; Mayo, S. L.; Olofson, R. A. *J. Am. Chem. Soc.* **1989**, *111*, 2487. - (117) Allin, S. M.; Northfield, C. J.; Page, M. I.; Slawin, A. M. Z. Tetrahedron Lett. 1998, 39, 4905. - Flynn, G. A.; Giroux, E. L.; Dage, R. C. J. Am. Chem. Soc. 1987, 109, 7914. - Kano, S.; Yuasa, Y.; Yokomatsu, T.; Shibuya, S. J. Org. Chem. **1983**, 48, 3835. - Kano, S.; Yuasa, Y.; Yokomatsu, T.; Shibuya, S. Chem. Lett. (120)1983, 1475. - (121) Kano, S.; Yuasa, Y.; Yokomatsu, T.; Shibuya, S. Heterocycles 1984, 22, 1411. - (122) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. (123) Speckamp, W. N. Recl. Trav. Chim., Pays-Bas 1981, 100, 345. (124) Speckamp, W. N. In Stereoselective Synthesis of Natural Products— - Workshop Conferences Hoechst, Bartmann, W., Winterfeldt, E., Eds.; Elsevier: Amsterdam, 1979; Vol. 7, pp 50-61. - Dijkink, J.; Schoemaker, H. E.; Speckamp, W. N. Tetrahedron Lett. 1975, 4043. - (126) Dijkink, J.; Speckamp, W. N. Tetrahedron Lett. 1975, 4047. (127) Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron Lett. 1975, - (128) Oostveen, A. R. C.; de Boer, J. J. J.; Speckamp, W. N. Heterocycles 1977, 7, 171. - (129) Dijkink, J.; Speckamp, W. N. Tetrahedron Lett. 1977, 935. - Schoemaker, H. E.; Dijkink, J.; Speckamp, W. N. Tetrahedron (130)1978, 34, 163. - (131) Dijkink, J.; Speckamp, W. N. Tetrahedron 1978, 34, 173. - (132) Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron 1978, 34, - (133) Schoemaker, H. E.; Speckamp, W. N. Tetrahedron Lett. 1978, 1515. - (134) Schoemaker, H. E.; Speckamp, W. N. Tetrahedron Lett. 1978, 4841. - Schoemaker, H. E.; Kruk, C.; Speckamp, W. N. Tetrahedron Lett. (135)**1979**, 2437. - (136) Dijkink, J.; Speckamp, W. N. Heterocycles 1979, 12, 1147 - Nossin, P. M. M.; Speckamp, W. N. Tetrahedron Lett. 1980, 21, 1991 - Wijnberg, B. P.; Speckamp, W. N. Tetrahedron Lett. 1980, 21, - (139) Schoemaker, H. E.; Speckamp, W. N. Tetrahedron 1980, 36, 951. (140) Hart, D. J. J. Org. Chem. 1981, 46, 367. (141) Choi, J.-K.; Jung, Y.-S.; Park, N.-S. Bull. Korean Chem. Soc. - **1988**, 9, 129. - (142) Wijnberg, B. P.; Speckamp, W. N.; Oostveen, A. R. C. Tetrahedron 1982, 38, 209. - (143) Hart, D. J. J. Am. Chem. Soc. 1980, 102, 397. (144) Kano, S.; Yokomatsu, T.; Yuasa, Y.; Shibuya, S. Tetrahedron Lett. 1983, 24, 1813. - (145) Kano, S.; Yokomatsu, T.; Nemoto, H.; Shibuya, S. Tetrahedron Lett. 1985, 26, 1531 - Kano, S.; Yokomatsu, T.; Yuasa, Y.; Shibuya, S. J. Org. Chem. 1985, 50, 3449. - Kano, S.; Yokomatsu, T.; Nemoto, H.; Shibuya, S. Chem. Lett. 1986, 143. Kano, S.; Yokomatsu, T.; Nemoto, H.; Shibuya, S. J. Am. Chem. - Soc. 1986, 108, 6746. Kano, S.; Yokomatsu, T.; Nemoto, H.; Shibuya, S. J. Org. Chem. - **1986**, *51*, 561. - (150) Hart, D. J.; Tsai, Y.-M. Tetrahedron Lett. 1981, 22, 1567. (151) Hart, D. J.; Yang, T.-K. Tetrahedron Lett. 1982, 23, 2761. (152) Hart, D. J.; Yang, T.-K. J. Org. Chem. 1985, 50, 235. - (153) Nossin, P. M. M.; Speckamp, W. N. Tetrahedron Lett. 1981, 22, - (154) Nossin, P. M. M.; Hamersma, J. A. M.; Speckamp, W. N. Tetrahedron Lett. 1982, 23, 3807. - (155) Ent, H.; de Koning, H.; Speckamp, W. N. Tetrahedron Lett. 1983, 24, 2109. - (156) Hamersma, J. A. M.; Nossin, P. M. M.; Speckamp, W. N. *Tetrahedron* **1985**, *41*, 1999. - Hart, D. J.; Yang, T.-K. J. Chem. Soc., Chem. Commun. 1983, - (158) Castelhano, A. L.; Krantz, A. J. Am. Chem. Soc. 1984, 106, 1877. - (159) Ent, H.; de Koning, H.; Speckamp, W. N. Tetrahedron Lett. 1985, *26*, 5105. - (160) Ent, H.; de Koning, H.; Speckamp, W. N. J. Org. Chem. 1986, *51*, 1687. - (161) Esch, P. M.; de Boer, R. F.; Hiemstra, H.; Boska, I. M.; Speckamp, W. N. Tetrahedron 1991, 47, 4063. - (162) Ent, H.; de Koning, H.; Speckamp, W. N. Heterocycles 1990, 30, - (163) Veenstra, S. J.; Hauser, K.; Schilling, W.; Betschart, C.; Ofner, S. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 3029. (164) Rutjes, F. P. J. T.; Veerman, J. J. N.; Meester, W. J. N.; Hiemstra, H.; Schoemaker, H. E. *Eur. J. Org. Chem.* **1999**, 127. (165) Schumai O.; Horikova, H.; Jusaski, T. J. Chem. Soc. Chem. - (165) Sakurai, O.; Horikawa, H.; Iwasaki, T. J. Chem. Soc., Chem. Commun. 1995, 2527. - (166) Esch, P. M.; Boska, I. M.; Hiemstra, H.; de Boer, R. F.; Speckamp, W. N. Tetrahedron 1991, 47, 4039. - (167) Flann, C.; Malone, T. C.; Overman, L. E. J. Am. Chem. Soc. 1987, *109*, 6097 - (168) Daub, G. W.; Heerding, D. A.; Overman, L. E. Tetrahedron 1988, 44, 3919. - (169) Overman, L. E.; Malone, T. C.; Meier, G. P. J. Am. Chem. Soc. 1983, 105, 6993. - Kano, S.; Yokomatsu, T.; Yuasa, Y.; Shibuya, S. Heterocycles **1986**, *24*, 621. - (171) Flann, C.; Overman, L. E. J. Am. Chem. Soc. 1987, 109, 6115.(172) Heitz, M.-P.; Overman, L. E. J. Org. Chem. 1989, 54, 2591. - (173) Yamada, Y.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 1996, 118, 1054. - (174) Castro, P.; Overman, L. E.; Zhang, X.; Mariano, P. S. *Tetrahedron Lett.* **1993**, *34*, 5243. - (175)Consonni, A.; Danieli, B.; Lesma, G.; Passarella, D.; Piacenti, P.; Silvani, A. *Eur. J. Org. Chem.* **2001**, 1377. - (176) McIntosh, M. C.; Weinreb, S. M. J. Org. Chem. 1993, 58, 4823. - (177) Khim, S.-K.; Wu, X.; Mariano, P. S. Tetrahedron Lett. 1996, 37, - (178) Chamberlin, A. R.; Chung, J. Y. L. Tetrahedron Lett. 1982, 23, - (179) Chamberlin, A. R.; Chung, J. Y. L. J. Am. Chem. Soc. 1983, 105, 3653. - (180)Chamberlin, A. R.; Nguyen, H. D.; Chung, J. Y. L. J. Org. Chem. **1984**, 49, 1682. - (181) Chamberlin, A. R.; Chung, J. Y. L. *J. Org. Chem.* **1985**, *50*, 4425. (182) Fukuyama, T.; Nunes, J. J. *J. Am. Chem. Soc.* **1988**, *110*, 5196. - Miller, S. A.; Chamberlin, A. R. J. Am. Chem. Soc. 1990, 112, (183)8100. - (184)Sakurai, O.; Horikawa, H. Tetrahedron Lett. 1996, 37, 7811. - (185) Gramain, J.-C.; Remuson, R. Tetrahedron Lett. 1985, 26, 327. - (186) Gramain, J.-C.; Remuson, R. Tetrahedron Lett. 1985, 26, 4083. (187) Hiemstra, H.; Fortgens, H. P.; Speckamp, W. N. Tetrahedron - Lett. **1985**, 26, 3155. (188) Hiemstra, H.; Sno, M. H. A. M.; Vijn, R. J.; Speckamp, W. N. J. - Org. Chem. 1985, 50, 4014. - (189) Mooiweer, H. H.; Hiemstra, H.; Fortgens, H. P.; Speckamp, W. N. Tetrahedron Lett. 1987, 28, 3285. - (190) Clarke, C.; Fleming, I.; Fortunak, J. M. D.; Gallagher, P. T.; Honan, M. C.; Mann, A.; Nübling, C. O.; Raithby, P. R.; Wolff, J. J. Tetrahedron **1988**, 44, 3931. - (191) Mittendorf, J.; Hiemstra, H.; Speckamp, W. N. Tetrahedron **1990**, 46, 4049. - (192) Mooiweer, H. H.; Hiemstra, H.; Speckamp, W. N. *Tetrahedron* 1991, 47, 3451. (193) Gelas-Mialhe, Y.; Gramain, J.-C.; Louvet, A.; Remuson, R. - Tetrahedron Lett. **1992**, *33*, 73. - (194) Gelas-Mialhe, Y.; Gramain, J.-C.; Jajouji, H.; Remuson, R. Heterocycles 1992, 34, 37. - (195) Chalard, P.; Remuson, R.; Gelas-Mialhe, Y.; Gramain, J.-C.; Canet, I. *Tetrahedron Lett.* **1999**, *40*, 1661 - (196) Chalard, P.; Remuson, R.; Gelas-Mialhe, Y.; Gramain, J.-C. Tetrahedron: Asymmetry 1998, 9, 4361. - Bardot, V.; Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.-C.; Remuson, R. Heterocycles 1998, 48, 507. - Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.-C.; Perrin, B.; - Remuson, R. Tetrahedron: Asymmetry 1998, 9, 1823. Sisko, J.; Weinreb, S. M. *J. Org. Chem.* **1991**, *56*, 3210. Sisko, J.; Henry, J. R.; Weinreb, S. M. *J. Org. Chem.* **1993**, *58*, - (200) - (201) Åhman, J.; Somfai, P. Tetrahedron 1992, 48, 9537. - (202) Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. Tetrahedron 1988, - (203) Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. J. Org. Chem. **1984**, 49, 1149. - (204) Hiemstra, H.; Speckamp, W. N. *Tetrahedron Lett.* 1983, *24*, 1407. (205) Pirrung, F. O. H.; Rutjes, F. P. J. T.; Hiemstra, H.; Speckamp, W. N. *Tetrahedron Lett.* 1990, *31*, 5365. - (206) Manteca, I.; Etxarri, B.; Ardeo, A.; Arrasate, S.; Osante, I.; Sotomayor, N.; Lete, E. *Tetrahedron* 1998, 54, 12361. (207) Gramain, J.-C.; Remuson, R. *Heterocycles* 1989, 29, 1263. (208) Esch, P. M.; Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. - Heterocycles 1987, 26, 75. - Somfai, P.; Åhman, J. Tetrahedron Lett. 1992, 33, 3791 - (210) Sun, P.; Sun, C.; Weinreb, S. M. *Org. Lett.* **2001**, *3*, 3507. (211) Keck, G. E.; Cressman, E. N. K.; Enholm, E. J. *J. Org. Chem.* **1989**, *54*, 4345. - (212) Keck, G. E.; Enholm, E. J. Tetrahedron Lett. 1985, 26, 3311. - (213) Hanessian, S.; Ninkovic, S.; Reinhold: U. Tetrahedron Lett. 1996, *37*, 8971 - (214) Denmark, S. E.; Weber, E. J. J. Am. Chem. Soc. 1984, 106, 7970. - Esch, P. M.; Boska, I. M.; Hiemstra, H.; Speckamp, W. N. Synlett 1989, 38. - (216) Ohwada, J.; Inouye, Y.; Kimura, M.; Karisawa, H. Bull. Chem. - Soc. Jpn. 1990, 63, 287. (217) Bottari, P.; Endoma, M. A.; Hudlicky, T.; Ghiviriga, I.; Abboud, - K. A. Coll. Czech. Chem. Commun. 1999, 64, 203. Nossin, P. M. M.; Speckamp, W. N. Tetrahedron Lett. 1979, 4411. - Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. J. Am. Chem. Soc. **1989**, 111, 2588. - Wong, P. L.; Moeller, K. D. J. Am. Chem. Soc. 1993, 115, 11434. - Karstens, W. F. J.; Moolenar, M. J.; Rutjes, F. P. J. T.; Grabowska, U.; Speckamp, W. N.; Hiemstra, H. *Tetrahedron Lett.* **1999**, *40*, 8629. - (222) Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. Tetrahedron 1988, 44, 3805 - (223) Metais, E.; Overman, L. E.; Rodriguez, M. I.; Stearns, B. A. J. Org. Chem. 1997, 62, 9210. - (224) Fisher, M. J.; Overman, L. E. *J. Org. Chem.* **1990**, *55*, 1447. (225) Gesson, J. P.; Jacquesy, J. C.; Rambaud, D. *Tetrahedron Lett.* - 1992, 33, 3633. - Cosson, A.; Gazeau, C.; Gesson, J.-P.; Jacquesy, J.-C.; Rambaud, D.; Renoux, B. Bull. Soc. Chem. Fr. 1994, 131, 95. - (227) Govindachari, T. R.; Chinnasamy, P.; Rajeswari, S.; Chandrasekaran, S.; Premila, M. S.; Natarajan, S.; Nagarajan, K.; Pai, B. R. Heterocycles 1984, 22, 585. - Sánchez, I. H.; López, F. J.; Flores, H. J.; Larraza, M. I. - Heterocycles 1983, 20, 247. (229) Heathcock, C.
H.; Davidsen, S. K.; Mills, S.; Sanner, M. A. J. - Am. Chem. Soc. **1986**, 108, 5650. Veenstra, S. J.; Speckamp, W. N. J. Am. Chem. Soc. **1981**, 103, 4645 - (231) Earley, W. G.; Oh, T.; Overman, L. E. Tetrahedron Lett. 1988, 29. 3785. - Madin, A.; O'Donnell, C. J.; Oh, T.; Old, D. W.; Overman, L. E.; - Sharp, M. J. Angew. Chem., Int. Ed. 1999, 38, 2934. Hiemstra, H.; Vijn, R. J.; Speckamp, W. N. J. Org. Chem. 1988, (233)*53*, 3882. - Newcombe, N. J.; Ya, F.; Vijn, R. J.; Hiemstra, H.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994, 767. (235) Dijkink, J.; Cintrat, J.-C.; Speckamp, W. N.; Hiemstra, H. - Tetrahedron Lett. 1999, 40, 5919. - Lessen, T. A.; Demko, D. M.; Weinreb, S. M. Tetrahedron Lett. **1990**, *31*, 2105. - Moolenaar, M. J.; Speckamp, W. N.; Hiemstra, H.; Poetsch, E.; Casutt, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 2391. - Ernest, I. *Tetrahedron* **1977**, *33*, 547. Mak, C.-P.; Baumann, K.; Mayeri, F.; Mayeri, C.; Fliri, H. Heterocycles 1982, 19, 1647 - Kametani, T.; Nakayama, A.; Itoh, A.; Honda, T. Heterocycles 1983, 20, 2355. - (241) Kametani, T.; Yukawa, H.; Honda, T. J. Chem. Soc., Chem. Commun. 1986, 651. - (242) Kametani, T.; Yukawa, H.; Honda, T. J. Chem. Soc., Perkin Trans. 1 1988, 833. - (243) Ponsford, R. J. Tetrahedron Lett. 1980, 21, 2451. - (244) Castagnioli, N., Jr. J. Org. Chem. 1969, 34, 3187. (245) Cushman, M.; Castagnioli, N., Jr. J. Org. Chem. 1971, 36, 3404. - (246) Cushman, M.; Castagnioli, N., Jr. J. Org. Chem. 1972, 37, 1268. - (247) Cushman, M.; Castagnioli, N., Jr. *J. Org. Chem.* **1973**, *38*, 440. (248) Cushman, M.; Castagnioli, N., Jr. *J. Org. Chem.* **1974**, *39*, 1546. (249) Cushman, M.; Gentry, J.; Dekow, F. W. *J. Org. Chem.* **1977**, *42*, - 1111. - (250) Haimova, M. A.; Mollov, N. M.; Ivanova, S. C.; Dimitrova, A. I.; Ognyanov, V. I. *Tetrahedron* **1977**, *33*, 331. (251) Cushman, M.; Cheng, L. *J. Org. Chem.* **1978**, *43*, 286. - (252) Kozikowski, A. P.; Schmiesing, R. *Synth. Commun.* **1978**, *8*, 363. (253) Cushman, M.; Dekow, F. W. *Tetrahedron* **1978**, *34*, 1435. (254) Khaimova, M.; Mikhovska, S.; Stanoeva, E.; Veleva, K.; Dimitrova, A. Izv. Khim. 1979, 12, 325. - (255) Cushman, M.; Dikshit, D. K. J. Org. Chem. 1980, 45, 5064. (256) Cushman, M.; Choong, T.-C.; Valko, J. T.; Koleck, M. P. Tetrahedron Lett. 1980, 21, 3845. - Cushman, M.; Choong, T.-C.; Valko, J. T.; Koleck, M. P. J. Org. Chem. 1980, 45, 5067. - (258) Robert, J.; Boucherle, A. Ann. Pharm. Fr. 1981, 39, 337. (259) Cushman, M.; Gupta, Y. P. Heterocycles 1982, 19, 1431. (260) Cushman, M.; Abbaspour, A.; Gupta, Y. P. Heterocycles 1982, 19. 1587. - (261) Pai, B. R.; Natarajan, S.; Suguna, H.; Rajeswari, S.; Chandrasekaran, S.; Nagarajan, K. *Indian J. Chem., Sect. B* **1982**, 21B. 607. - (262) Cushman, M.; Abbaspour, A.; Gupta, Y. P. J. Am. Chem. Soc. **1983**, *105*, 2873. - (263) Cushman, M.; Wong, W. C. J. Org. Chem. 1984, 49, 1278. (264) Cushman, M.; Mohan, P. J. Med. Chem. 1985, 28, 1031. (265) Cushman, M.; Madaj, E. J. J. Org. Chem. 1987, 52, 907. (266) Cushman, M.; Chen, J. J. Org. Chem. 1987, 52, 1517. (267) Fodor, L.; Szabo, J.; Bernath, G.; Sohar, P.; MacLean, D. B.; Smith, R. W.; Ninomiya, I.; Naito, T. J. Heterocycl. Chem. 1989, *26*, 333 - (268) Mayadeo, M. S.; Kulkarni, S. J.; Deodhar, K. D. Synthesis 1990, - (269) Georgieva, A.; Stanoeva, E.; Spassov, S.; Macicek, J.; Angelova, O.; Haimova, M.; De Kimpe, N. Tetrahedron 1991, 47, 3375. - (270) Bonnaud, B.; Carlessi, A.; Bigg, D. C. H. J. Heterocycl. Chem. 1993, 30, 257. - (271) Georgieva, A.; Stanoeva, E.; Karamfilova, K.; Spassov, S.; Angelova, O.; Haimova, M.; De Kimpe, N.; Boelens, M. Tetra*hedron* **1994**, *50*, 9399. - (272) Georgieva, A.; Spassov, S.; Stanoeva, E.; Topalova, I.; Tchanev, C. J. Chem. Res., Synop. 1997, 148. - (273) Yu, N.; Bourel, L.; Deprez, B.; Gesquiere, J.-C. Tetrahedron Lett. **1998**, 39, 829. - (274) Xu, X.-Y.; Qin, G.-W.; Xu, R.-S.; Zhu, X.-Z. Tetrahedron 1998, 54, 14179. - (275) Strumberg, D.; Pommier, Y.; Paull, K.; Jayaraman, M.; Nagafuji, P.; Cushman, M. J. Med. Chem. 1999, 42, 446. - (276) Iwasa, K.; Gupta, Y. P.; Cushman, M. J. Org. Chem. 1981, 46, - (277) Tidwell, T. T. *Ketenes*, Wiley: New York, 1995; pp 518–527. (278) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. *Eur. J.* Org. Chem. 1999, 3223. - (279) Van der Steen, F. H.; Van Koten, G. Tetrahedron 1991, 47, 7503. - (280) Cossio, F. P.; Ugalde, J. M.; Lopez, X.; Lecea, B.; Palomo, C. J. Am. Chem. Soc. 1993, 115, 995. (281) Lynch, J. E.; Riseman, S. M.; Laswell, W. L.; Tschaen, D. M.; Volante, R. P.; Smith, G. B.; Shinkai, I. J. Org. Chem. 1989, 54, 2002. - (282) Bolognese, A.; Diurno, M. V.; Mazzoni, O.; Giordano, F. Tetra- - (283) Hegedus, L. S.; Montgomery, J.; Narukawa, Y.; Snustad, D. C. J. Am. Chem. Soc. 1991, 113, 5784. - (284) Arrietae, A.; Lecea, B.; Cossio, F. P. J. Org. Chem. 1998, 63, 5869. - (285) Georg, G. I.; Mashava, P. M.; Guan, X. Tetrahedron Lett. 1991, *32*, 581. - (286) Hart, D. J.; Ha, D.-C. Tetrahedron Lett. 1985, 26, 5493. - (287) Kawabata, T.; Itoh, K.; Hiyama, T. Tetrahedron Lett. 1989, 30, - (288) Chiba, T.; Nakai, T. Tetrahedron Lett. 1985, 26, 4647. - (289) Alcaide, B.; Almendros, P.; Salgado, N. R.; Rodriguez-Vincente, A. J. Org. Chem. 2000, 65, 4453. - (290) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817. - (291) Collado, M. I.; Manteca, I.; Sotomayor, N.; Villa, M.-J.; Lete, E. ^r. Org. Chem. **1997**, 62, 2080. - (292) Finkelstein, J.; Brossi, A. J. Heterocycl. Chem. 1967, 4, 315. - (293) Lukanov, L. K.; Venkov, A. P.; Mollov, N. M. Synthesis 1987, - (294) Maryanoff, B. E.; Rebarchak, M. C. Synthesis 1992, 1245 - (295) Venkov, A. P.; Ivanov, I. I. *Synth. Commun.* **1993**, 23, 1707. (296) Kano, S.; Yokomatsu, T.; Yuasa, Y.; Shibuya, S. *Chem. Pharm.* - Bull. 1985, 33, 340. - (297)Danishefsky, S.; Berman, E.; Cvetovich, R.; Minamikawa, J. Tetrahedron Lett. 1980, 21, 4819. - (298) Marson, C. M.; Grabowska, U.; Walsgrove, T.; Eggleston, D. S.; Baures, P. W. J. Org. Chem. 1991, 56, 2603. - (299) Marson, C. M.; Grabowska, U.; Walsgrove, T. J. Org. Chem. 1992, 57, 5045. - (300) Marson, C. M.; Grabowska, U.; Walsgrove, T.; Eggleston, D. S.; Baures, P. W. J. Org. Chem. 1994, 59, 284. - (301) Marson, C. M.; Grabowska, U.; Fallah, A.; Walsgrove, T.; Eggleston, D. S.; Baures, P. W. *J. Org. Chem.* **1994**, *59*, 291. - (302) Johnson, A. P.; Luke, R. W. A.; Steele, R. W.; Boa, A. N. J. Chem. Soc., Perkin Trans. 1 1996, 883. - (303) Johnson, A. P.; Luke, R. W. A.; Singh, G.; Boa, A. N. J. Chem. Soc., Perkin Trans. 1 1996, 895. - (304) Johnson, A. P.; Luke, R. W. A.; Boa, A. N. J. Chem. Soc., Perkin Trans. 1 1996, 907. - (305) Rice, K. C.; Ripka, W. C.; Reden, J.; Brossi, A. J. Org. Chem. - 1980, 45, 601. (306) Masse, C. E.; Dakin, L. A.; Knight, B. S.; Panek, J. S. *J. Org.* - *Chem.* **1997**, *62*, 9335. (a) Hubert, J. C.; Wijnberg, J. B. P. A.; Speckamp, W. N. *Tetrahedron* **1975**, *31*, 1437. (b) Simpkins, N. S.; Gill, C. D. *Org.* Lett. **2003**, 5, 535. - Moeller, L.; Hanau, C. E. *Tetrahedron Lett.* **1992**, *33*, 6041. Ollero, K. D.; Mentink, G.; Rutjes, F. P. J. T.; Speckamp, W. N.; Hiemstra, H. Org. Lett. 1999, 1, 1331. - (310) Kim, S.-H.; Kim, S.-I.; Lai, S.; Cha, J. K. J. Org. Chem. 1999, 64, 6771. - Kim, S.-H.; Cha, J. K. Synthesis 2000, 2113. - Wawzonek, S.; Nordstrom, J. D. J. Med. Chem. 1965, 8, 265. - (313) Robl, J. A. Tetrahedron Lett. 1994, 35, 393. - (314) Magnus, P.; Hulme, C. Tetrahedron Lett. 1994, 35, 8097. - (315) Magnus, P.; Hulme, C.; Weber, W. J. Am. Chem. Soc. 1994, 116, 4501. - (316) Meuzelaar, G. J.; Neeleman, E.; Maat, L.; Sheldon, R. A. *Eur. J. Org. Chem.* **1998**, 2101. - (317) Cassayre, J.; Quiclet-Sire, B.; Saunier, J.-P.; Zard, S. Z. *Tetrahedron Lett.* **1998**, *39*, 8995. (318) Orito, K.; Satoh, Y.; Nishizawa, H.; Harada, R.; Tokuda, M. *Org.* - Lett. **2000**, 2, 2535. - (319) Brown, D. W.; Dyke, S. F. Tetrahedron 1966, 22, 2429. (320) Lee, Y. S.; Lee, J. Y.; Park, H. Synth. Commun. 1997, 27, 2799. - (321) Lee, J. Y.; Lee, Y. S.; Chung, B. Y.; Park, H. Tetrahedron 1997, 53, 2449. - Cannizzo, L. F.; Grubbs, R. H. *J. Org. Chem.* **1985**, *50*, 2316. Shono, T.; Matsumura, Y.; Tsubata, K. *J. Am. Chem. Soc.* **1981**, 103, 1172. - Shono, T. Tetrahedron 1984, 40, 811. - (325) Moeller, K. D.; Wang, P. W.; Tarazi, S.; Marzabadi, M. R.; Wong, P. L. J. Org. Chem. 1991, 56, 1058. - Moeller, K. D.; Tarazi, S.; Marzabadi, M. R. Tetrahedron Lett. **1989**, 30, 1213 - (327) Han, G.; McIntosh, M. C.; Weinreb, S. M. Tetrahedron Lett. 1994, 35, 5813. - (328) Han, G.; LaPorte, M. G.; McIntosh, M. C.; Weinreb, S. M.; Parvez, M. J. Org. Chem. 1996, 61, 9483. (329) Chao, W.; Weinreb, S. M. Tetrahedron Lett. 2000, 41, 9199. - Kim, H. J.; Yoon, U. C.; Jung, Y.-S.; Park, N. S.; Cederstrom, E. M.; Mariano, P. S. *J. Org. Chem.* **1998**, *63*, 860. (330) - (331) Sun, H.; Moeller, K. D. Org. Lett. 2002, 4, 1547. - (332) Boto, A.; Hernández, R.; Suárez, E. Tetrahedron Lett. 1999, 40, 5945 - Boto, A.; Hernández, R.; Suárez, E. J. Org. Chem. 2000, 65, 4930. - (334) Iwasaki, T.; Horikawa, H.; Matsumoto, K.; Miyoshi, M. J. Org. Chem. 1979, 44, 1552. - (335) Zietlow, A.; Steckhan, E. J. Org. Chem. 1994, 59, 5658. - (336) Mori, M.; Watanabe, Y.; Kagechika, K.; Shibasaki, M. Heterocycles 1989, 29, 2089. - (337) Rigo, B.; El Ghammarti, S.; Couturier, D. Tetrahedron Lett. 1996, 37, 485. - (338) Venkov, A. P.; Mollov, N. M. Synthesis 1982, 216. (339) Frank, K. E.; Aubé, J. Tetrahedron Lett. 1998, 39, 7239. - (340) Venkov, A. P.; Boyadjieva, A. K. Synth. Commun. 1999, 29, 487. - (341) Padwa, A.; Gunn, D. E., Jr.; Osterhout, M. H. Synthesis 1997, - (342) Padwa, A.; Waterson, A. G. Curr. Org. Chem. 2000, 4, 175 - (343) Padwa, A.; Waterson, A. G. *Tetrahedron Lett.* **1998**, *39*, 8585. (344) Padwa, A.; Heidelbaugh, T. M.; Kuethe, J. T.; McClure, M. S. *J.* - Org. Chem. 1998, 63, 6778. - Padwa, A.; Waterson, A. G. J. Org. Chem. 2000, 65, 235 - (346) Padwa, A.;
Waterson, A. G. Tetrahedron 2000, 56, 10159. - (347) Mondon, A. Justus Liebigs Ann. Chem. 1959, 628, 123. - (348) Mondon, A. Angew. Chem. 1958, 70, 406. - (349) Mondon, A.; Böttcher, K. Chem. Ber. 1970, 103, 1512. - (350) Padwa, A.; Brodney, M. A.; Marino, J. P., Jr.; Sheehan, S. M. J. Org. Chem. 1997, 87, 78. - (351)Stork, G.; Kretchmer, R. A.; Schlessinger, R. H. J. Am. Chem. Soc. 1968, 90, 1647. - (352) Stork, G. Pure Appl. Chem. 1968, 17, 383. - (353) Manteca, I.; Sotomayor, N.; Villa, M.-J.; Lete, E. *Tetrahedron Lett.* **1996**, *376*, 7841. - (354) Winn, M.; Zaugg, H. E. *J. Org. Chem.* **1968**, *33*, 3779. (355) Hitchings, G. J.; Vernon, J. M. *J. Chem. Soc., Perkin Trans.* 1 **1990**, 1757. - (356) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. - (357) Johnson, D. C. Acc. Chem. Res. 1993, 26, 476. - (358) Okano, T.; Sakaida, T.; Eguchi, S. Heterocycles 1997, 44, 227. - Watanabe, Y.; Kamochi, Y.; Miyazaki, T. Heterocycles 1981, 16, (359) - (360) Finkelstein, J.; Brossi, A. J. Heterocycl. Chem. 1967, 4, 315. - (361) Evans, D. A.; Biller, S. A. Tetrahedron Lett. 1985, 26, 1911. - (362) Urban, F. J. Tetrahedron Lett. 1988, 29, 5493. - (363) Venkov, A. P.; Lukanov, L. K. *Synthesis* **1989**, 59. (364) Mollov, N. M.; Lukanov, L. K. *Synthesis* **1978**, 62. - (365) Lukanov, L. K.; Venkov, A. P.; Mollov, N. M. Synthesis 1987, - (366) Orazi, O. O.; Corral, R. A.; Giaccio, H. J. Chem. Soc., Perkin Trans. 1 **1986**, 1977. (367) Ito, K.; Tanaka, H. Chem. Pharm. Bull. **1977**, 25, 1732. - (368) Kano, S.; Yuasa, Y.; Shibuya, S. Heterocycles 1984, 22, 2327. - (369)Mamouni, A.; Pigeon, P.; Daich, A.; Decroix, B. J. Heterocycl. Chem. 1997, 34, 1495. - (370) Othman, M.; Pigeon, P.; Decroix, B. Tetrahedron 1997, 53, 2495. - (371) Mollov, N. M.; Venkov, A. P. Izv. Khim. 1977, 10, 616. - (372) Orazi, O. O.; Corral, R. A.; Bravo, R. J. Heterocycl. Chem. 1986, 23, 1701. - (373) Hitchings, G. J.; Thomas, M. D.; Vernon, J. M. J. Chem. Soc., Perkin Trans. 1 **1992**, 895. - (374) Bailey, P. D.; Morgan, K. M.; Smith, D. I.; Vernon, J. M. - Tetrahedron Lett. **1994**, 35, 7115. (375) Bahajaj, A. A.; Bailey, P. D.; Moore, M. H.; Morgan, K. M.; Vernon, J. M. *J. Chem. Soc.*, Chem. Commun. **1994**, 2511. - (376) Bahajaj, A. A.; Vernon, J. M. J. Chem. Soc., Perkin Trans. 1 1996, 1041 - (377) Ben-Ishai, D.; Sataty, I.; Peled, N.; Goldshare, R. Tetrahedron **1987**, 43, 439. - (378) Flynn, G. A.; Burkholder, T. P.; Huber, E. W.; Bey, P. Bioorg. Med. Chem. Lett. 1991, 1, 309. - (379) Tourwé, D.; Verschueren, K.; Van Binst, G.; Davis, P.; Porreca, F.; Hruby, V. J. *Bioorg. Med. Chem. Lett.* **1992**, *2*, 1305. - (380) de Laszlo, S. E.; Bush, B. L.; Doyle, J. J.; Greenlee, W. J.; Hangauer, D. G.; Halgren, T. A.; Lynch, R. J.; Schorn. T. W.; - Siegl, P. K. S. *J. Med. Chem.* **1992**, *35*, 833. (381) Lee, Y. S.; Min, B. J.; Park, Y. K.; Lee, J. Y.; Lee, S. J.; Park, H. Tetrahedron Lett. 1999, 40, 5569. - (382) Lee, Y. S.; Min, B. J.; Park, Y. K.; Lee, J. Y.; Lee, S. J.; Park, H. Tetrahedron 1999, 55, 12991. - (383) Nakatsuka, S.; Miyazaki, H.; Goto, T. Chem. Lett. 1981, 407. - (384) Kraus, G. A.; Yue, S. *J. Org. Chem.* **1983**, *48*, 2936. (385) Sánchez, I. H.; López, F. J.; Soria, J. J.; Larraza, M. I.; Flores, H. J. *J. Am. Chem. Soc.* **1983**, *105*, 7640. - (386) Ben-Ishai, D.; Peled, N.; Sataty, I. Tetrahedron Lett. 1980, 21, - (387) Forrest, T. P.; Dauphinee, G. A.; Chen, F. M. F. Can. J. Chem. 1974, 52, 2725. - (388) Wittekind, R. R.; Lazarus, S. J. Heterocycl. Chem. 1971, 8, 495. - (389) Marson, C. M.; Pink, J. H.; Smith, C. Tetrahedron Lett. 1995, *36*, 8107. - (390) Zinczuk, J.; Sorokin, I. H.; Orazi, O. O.; Corral, R. A. J. Heterocycl. Chem. 1992, 29, 859. - (391) Lee, Y. S.; Kang, D. W.; Lee, S. J.; Park, H. J. Org. Chem. 1995, 60, 7149. - (392) Lee, Y. S.; Kang, D. W.; Lee, S. J.; Park, H. Synth. Commun. **1995**, *25*, 1947. - (393) Lee, Y. S.; Kang, S. S.; Choi, J. H.; Park, H. Tetrahedron 1997, 53, 3045. - (394) Koot, W.-J.; Hiemstra, H.; Speckamp, W. N. Tetrahedron: Asymmetry **1993**, 4, 1941. - (395) Luker, T.; Koot, W.-J.; Hiemstra, H.; Speckamp, W. N. *J. Org. Chem.* **1998**, *63*, 220. - (396) Koot, W.-J.; Hiemstra, H.; Speckamp, W. N. *Tetrahedron Lett.* **1992**, *33*, 7969. - (397) Lee, Y. S.; Cho, D. J.; Kim, S. N.; Choi, J. H.; Park, H. J. Org. Chem. 1999, 64, 9727. - Kano, S.; Yuasa, Y.; Shibuya, S. Heterocycles 1985, 23, 395. - (399) Robl, J. A.; Cimarusti, M. P.; Simpkins, L. M.; Weller, H. N.; Pan, Y. Y.; Malley, M.; DiMarco, J. D. J. Am. Chem. Soc. 1994, 116, 2348. - (400) Zaugg, H. E.; Arendsen, D. L. J. Heterocycl. Chem. 1974, 11, 803. - (401) Liao, Z.-K.; Kohn, H. J. Org. Chem. 1984, 49, 4745. - (402) Kohn, H.; Liao, Z.-K. J. Org. Chem. 1982, 47, 2787. (403) Brouillette, W. J.; Brown, G. B.; DeLorey, T. M.; Liang, G. J. Pharm. Sci. 1990, 79, 871. - (404) Kano, S.; Yuasa, Y.; Shibuya, S. Synth. Commun. 1985, 15, 883. - (405) Kano, S.; Yuasa, Y. Heterocycles **1985**, 23, 2907. (406) Kano, S.; Yuasa, Y.; Shibuya, S. Synthesis **1984**, 1071. (407) Frehel, D.; Maffrand, J.-P. Heterocycles **1983**, 20, 1731. - (408) Kim, J. H.; Lee, Y. S.; Park, H.; Kim, C. S. Tetrahedron 1998, *54*, 7395. - (409) Kim, J. H.; Lee, Y. S.; Kim, C. S. Heterocycles 1998, 48, 2279. - (410) Zawadzka, A.; Leniewski, A.; Maurin, J. K.; Wojtasiewicz, K.; Czarnocki, Z. Org. Lett. 2001, 3, 997 - (411) Kurihara, H.; Mishima, H. Tetrahedron Lett. 1982, 23, 3639. - (412) Fukuyama, T.; Sachleben, R. A. J. Am. Chem. Soc. 1982, 104, - (413) Fukuyama, T.; Yang, L.; Ajeck, K. L.; Sachleben, R. A. J. Am. Chem. Soc. 1990, 112, 3712. - Saito, N.; Yamauchi, R.; Nishioka, H.; Ida, S.; Kubo, A. J. Org. - Chem. **1989**, *54*, 5391. (415) Kubo, A.; Saito, N.; Nakamura, M.; Ogata, K.; Sakai, S. *Heterocycles* **1987**, *26*, 1765. - (416) Kubo, A.; Saito, N.; Yamato, H.; Masubuchi, K.; Nakamura, M. J. Org. Chem. 1988, 53, 4295. (417) Corey, E. J.; Gin, D. Y.; Kania, R. S. J. Am. Chem. Soc. 1996, - 118 9202 - (418) Endo, A.; Kann, T.; Fukuyama, T. Synlett 1999, 1103. - (419) Saito, N.; Tachi, M.; Seki, R.; Kamayachi, H.; Kubo, A. Chem. Pharm. Bull. 2000, 48, 1549. - Saito, N.; Obara, Y.; Azumaya, M.; Kubo, A. Chem. Pharm. Bull. 1992, 40, 2620. - Saito, N.; Tanitsu, M.; Betsui, T.; Suzuki, R.; Kubo, A. Chem. Pharm. Bull. 1997, 45, 1120. - Kubo, A.; Saito, N.; Yamato, H.; Yamauchi, R.; Hiruma, K.; Inoue, S. *Chem. Pharm. Bull.* **1988**, *36*, 2607. - Saito, N.; Kamayachi, H.; Tachi, M.; Kubo, A. Heterocycles 1999, - (424) Saito, N.; Tashiro, K.; Maru, Y.; Yamaguchi, K.; Kubo, A. J. Chem. Soc., Perkin Trans. 1 1997, 53. - (425) Martinez, E. J.; Corey, E. J. Org. Lett. 2000, 2, 993. (426) Shawe, T. T.; Liebeskind, L. S. Tetrahedron 1991, 47, 5643. (427) Teerhuis, N. M.; Hiemstra, H.; Speckamp, W. N. Tetrahedron - (428) Rutjes, P. J. T.; Teerhuis, N. M.; Hiemstra, H.; Speckamp, W. N. Tetrahedron 1993, 49, 8605. (429) Hamersma, J. A. M.; Speckamp, W. N. Tetrahedron 1982, 38, 38, 38 - 3255. - (430) Sheehan, S. M.; Beall, L. S.; Padwa, A. Tetrahedron Lett. 1998, 39, 4761. - (431) Padwa, A.; Beall, L. S.; Heidelbaugh, T. M.; Liu, B.; Sheehan, S. M. J. Org. Chem. 2000, 65, 2684. - Osante, I.; Collado, M. I.; Lete, E.; Sotomayor, N. Synlett 2000, 101. - Osante, I.; Collado, M. I.; Lete, E.; Sotomayor, N. Eur. J. Org. Chem. 2001, 1267. - Christoffers, J. Helv. Chim. Acta 1998, 81, 845. - (435) Tanis, S. P.; Dixon, L. A. *Tetrahedron Lett.* **1987**, *28*, 2495. (436) Tanis, S. P.; Deaton, M. V.; Dixon, L. A.; McMillis, M. C.; Raggon, J. W.; Collins, M. A. J. Org. Chem. **1998**, 63, 6914. (437) Martin, S. F.; Bur, S. K. Tetrahedron Lett. **1997**, 38, 7641. (438) Frehel, D.; Maffrand, J.-P. Heterocycles **1984**, 22, 143. - (439) Pigeon, P.; Decroix, B. *Tetrahedron Lett.* **1998**, *39*, 8659. (440) Meth-Cohn, O.; Vij, R. R.; Smalley, R. K.; Bass, R. *J. Chem. Res.*, Minipr. 1989, 1001. - (441) Kano, S.; Yuasa, Y.; Yokomatsu, T.; Shibuya, S. Synthesis 1983, 585. - (442) Kano, S.; Yuasa, Y.; Yokomatsu, T.; Shibuya, S. Heterocycles 1983, 20, 2411. - Netchitailo, P.; Othman, M.; Decroix, B. J. Heterocycl. Chem. 1997, 34, 321. - Pigeon, P.; Decroix, B. Tetrahedron Lett. 1996, 37, 7707. - (445) Korenova, A.; Netchitailo, P.; Decroix, B. J. Heterocycl. Chem. **1998**, 35, 9. - (446) Othman, M.; Pigeon, P.; Netchitailo, P.; Daich, A.; Decroix, B. Heterocycles **2000**, *52*, 273. - (447) Massa, S.; Mai, A.; Corelli, F. Tetrahedron Lett. 1988, 29, 6471. - (448) Johns, S. R.; Lamberton, J. A. Chem. Commun. 1966, 312. (449) Comins, D. L.; Joseph, S. P. In Comprehensive Heterocyclic Chemistry, 2nd ed.; McKillop, A., Ed.; Elsevier: Oxford, 1996. - (450) Brodney, M. A.; Padwa, A. Tetrahedron Lett. 1997, 38, 6153. - (451) Valls, N.; Segarra, V. M.; Bosch, J. Heterocycles 1986, 24, 943. - Morrison, G. C.; Cetenko, W. A.; Shavel, J., Jr. J. Org. Chem. (452)1967, 32, 2768. - (453)(a) Klatte, F.; Rosentreter, U.; Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1977, 16, 878. (b) Becker, R.; Benz, G.; Rosner, M.; Rosentreter, U.; Winterfeldt, E. Chem. Ber. 1979, 112, 1879. - Barton, J. E. D.; Harley-Mason, J. Chem. Commun. 1965, 298. - (455) Hagen, T. J.; Narayanan, K.; Names, J.; Cook, J. M. J. Org. Chem. 1989, 54, 2170. - (456) Narayanan, K.; Cook, J. M. Tetrahedron Lett. 1990, 31, 3397. (457) - Wawzonek, S.; Nelson, G. E. J. Org. Chem. 1962, 27, 1377. (458) Harley-Mason, J.; Atta-ur-Rahman; Beisler, J. A. *Chem. Commun.* **1966**, 743. - (459) Harley-Mason, J.; Atta-ur-Rahman. Chem. Commun. 1968, 1845. - (460) Harley-Mason, J.; Kaplan, M. Chem. Commun. 1967, 915. - (461) Pancrazi, A.; Kervagoret, J.; Khuong-Huu, Q. Tetrahedron Lett. **1991**, 32, 4303. - (462) Brutcher, F. V.; Vanderwerff, W. D.; Dreikorn, B. J. Org. Chem. 1972, 37, 297. - Wawzonek, S.; Maynard, M. M. J. Org. Chem. 1967, 32, 3618. - Heathcock, C. H.; Norman, M. H.; Dickman, D. A. J. Org. Chem. 1990, 55, 798. - Winterfeldt, E. Chem. Ber. 1964, 97, 2463. - (466) Winterfeldt, E.; Nelke, J. M.
Chem. Ber. 1970, 103, 1174. - (467) Hubert, J. C.; Speckamp, W. N.; Huisman, H. O. Tetrahedron Lett. **1972**, 4493. - Wijnberg, J. B. P. A.; Schoemaker, H. E.; Speckamp, W. N. - Tetrahedron 1978, 34, 179. Speckamp, W. N.; Dijkink, J.; Pasman, P.; Hubert, J. C. Z. Naturforsch. 1978, 33b, 127. - (470) Atta-ur-Rahman; Ghazala, M.; Sultana, N.; Bashir, M. Tetrahedron Lett. **1980**, *21*, 1773. (471) Ducrot, P.; Thal, C. Tetrahedron Lett. **1999**, *40*, 9037. - Valls, N.; Segarra, V. M.; Maillo, L. C.; Bosch, J. Tetrahedron (472)**1991**, 47, 1065. - (473) Yamanaka, E.; Shibata, N.; Sakai, S. Heterocycles 1984, 22, 371. (474) Nakagawa, M.; Fukushima, H.; Kawate, T.; Hongu, M.; Kodato, S.; Une, T.; Taniguchi, M.; Hino, T. Tetrahedron Lett. 1986, 27, 3235 - (475) Lögers, M.; Overman, L. E.; Welmaker, G. S. J. Am. Chem. Soc. 1995, 117, 9139. - Valls, N.; Segarra, V. M.; López, X.; Bosch, J. Heterocycles 1989, (476)29, 231, - (477) Toczko, M. A.; Heathcock, C. H. J. Org. Chem. 2000, 65, 2642. (478) Harrison, D. M. Tetrahedron Lett. 1981, 22, 2501. - (479) Jackson, A. H.; Smith, A. E. *Tetrahedron* **1968**, *24*, 403. (480) Woodward, R. B.; Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker, - H. U.; Schenker, K. Tetrahedron 1963, 19, 247. (481) Ottenheijm, H. C. J.; Plate, R.; Noordik, J. H.; Herscheid, J. D. M. J. Org. Chem. **1982**, 47, 2147. (482) Hart, D. J.; Magomedov, N. Tetrahedron Lett. **1999**, 40, 5429. - (483) Hart, D. J.; Magomedov, N. A. J. Am. Chem. Soc. 2001, 123, - Hamersma, J. A. M.; Schoemaker, H. E.; Speckamp, W. N. *Tetrahedron Lett.* **1979**, 1347. - Brosius, A. D.; Overman, L. E. J. Org. Chem. 1997, 62, 440. - (486) Hart, D. J. *J. Org. Chem.* **1981**, *46*, 3576. (487) Hart, D. J. *J. Org. Chem.* **1982**, *47*, 4403. - (488) Hart, D. J.; Kanai, K. J. Am. Chem. Soc. 1983, 105, 1255. - (489) Hart, D. J.; Kanai, K. *J. Org. Chem.* **1982**, *47*, 1555. (490) Hart, D. J.; Hong, W.-P. *J. Org. Chem.* **1985**, *50*, 3670. (491) Hart, D. J.; Hong, W.-P.; Hsu, L.-Y. *J. Org. Chem.* **1987**, *52*, 4665. - (492) Ent, H.; de Koning, H.; Speckamp, W. N. Heterocycles 1988, 27, - (493) Moeller, K. D.; Rothfus, S. L.; Wong, P. L. Tetrahedron 1991, - (494) Moeller, K. D.; Rothfus, S. L. Tetrahedron Lett. 1992, 33, 2913. - (495) Moeller, K. D.; Hanau, C. E.; d'Avignon, A. Tetrahedron Lett. 1994, 35, 825. - (496) Li, W.; Hanau, C. E.; d'Avignon, A.; Moeller, K. D. J. Org. Chem. 1995, 60, 8155. - (497) Li, W.; Moeller, K. D. J. Am. Chem. Soc. 1996, 118, 10106. - (498) Chu, W.; Moeller, K. D. *Tetrahedron Lett.* **1999**, *40*, 7939. (499) Lochead, A. W.; Proctor, G. R.; Caton, M. P. L. *J. Chem. Soc.*, Perkin Trans. 1 **1984**, 2477. - (500) Daïch, A.; Marchalin, S.; Pigeon, P.; Decroix, B. Tetrahedron Lett. **1998**, *39*, 9187. - (501) Heaney, H.; Taha, M. O. Tetrahedron Lett. 1998, 39, 3341. - (502) Marson, C. M.; Pink, J. H.; Smith, C.; Hursthouse, M. B.; Malik, K. M. A. Tetrahedron Lett. 2000, 41, 127. - (503) Taber, D. F.; Hoerrner, R. S.; Hagen, M. D. J. Org. Chem. 1991, 56, 1287, - (504) Melching, K. H.; Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. Tetrahedron Lett. 1986, 27, 4799. (505) Wijnberg, B. P.; Speckamp, W. N. Tetrahedron Lett. 1981, 22, - (506) Gesson, J.-P.; Jacquesy, J.-C.; Rambaud, D. Tetrahedron 1993, 49, 2239. - (507) Evans, D. A.; Thomas, E. W. *Tetrahedron Lett.* **1979**, 411. (508) Evans, D. A.; Thomas, E. W. *J. Am. Chem. Soc.* **1982**, *104*, 3695. (509) Gessner, W.; Takahashi, K.; Witkop, B.; Brossi, A.; Albuquerque, - E. X. Helv. Chim. Acta 1985, 68, 49. - (510) Hadley, M. S.; King, F. D.; Martin, R. T. Tetrahedron Lett. 1983, *24*. 91. - (511) Shono, T.; Matsumura, Y.; Uchida, K.; Kobayashi, H. J. Org. *Chem.* **1985**, *50*, 3245. - (512) Shono, T.; Matsumura, Y.; Uchida, K.; Tagami, K. Chem. Lett. 1987, 919. - (513) Romero, A. G.; Leiby, J. A.; Mizsak, S. A. J. Org. Chem. 1996, 61, 6974. - (514) Kano, S.; Yuasa, Y. Heterocycles 1983, 20, 857. - (515) Frank, K. E.; Aubé, J. J. Org. Chem. 2000, 65, 655.(516) Brodney, M. A.; Padwa, A. J. Org. Chem. 1999, 64, 556. - (517) Ben-Ishai, D. J. Chem. Soc., Chem. Commun. 1980, 687 - (518) Li, T.-T.; Lesko, P.; Ellison, R. H.; Subramanian, N.; Fried, J. H. J. Org. Chem. **1981**, 46, 111. (519) Melnick, M. J.; Freyer, A. J.; Weinreb, S. M. *Tetrahedron Lett*. - **1988**, 29, 3891. - (520) Liao, Z.-K.; Kohn, H. J. Org. Chem. 1984, 49, 3812. - (521) Sheikh, Z.; Steel, R.; Tasker, A. S.; Johnson, A. P. J. Chem. Soc., Chem. Commun. 1994, 763. - (522) Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. Recl. Trav. Chim., Pays-Bas 1986, 105, 299. - (523) Sakurai, H. Pure Appl. Chem. 1982, 54, 1. (524) Hosomi, A. Acc. Chem. Res. 1988, 21, 200. - (525) Schinzer, D. Synthesis 1988, 263.(526) Masse, C. E.; Panek, J. S. Acc. Chem. Res. 1995, 95, 1293. - (527) Cozzi, P. G.; Tagliavini, E.; Umani-Ronchi, A. Gazz. Chim. Ital. **1997**, 127, 247. - (528) Beyersbergen van Henegouwen, W. G.; Hiemstra, H. J. Org. Chem. 1997, 62, 8862. - (529) Beyersbergen van Henegouwen, W. G.; Fieseler, R. M.; Rutjes, - Tsuda, Y.; Ishiura, A.; Hosoi, S.; Isobe, K. Chem. Pharm. Bull. - **1992**, *40*, 1697. Skrinjar, M.; Nilsson, C.; Wistrand, L.-G. *Tetrahedron: Asym-* - (533) - (534) Schultz, A. G.; Dai, M. *Tetrahedron Lett.* **1999**, *40*, 645. (535) Okita, M.; Wakamatss, T.; Ban, Y. *Heterocycles* **1983**, *20*, 401. (536) Blum, Z.; Ekström, M.; Wistrand, L.-G. *Acta Chem. Scand.* **1984**, - B38, 297. (537) Hiemstra, H.; Fortgens, H. P.; Stegenga, S.; Speckamp, W. N. Tetrahedron Lett. 1985, 26, 3151. - (538)Hiemstra, H.; Klaver, W. J.; Speckamp, W. N. Tetrahedron Lett. **1986**, 27, 1411. - Hiemstra, H.; Klaver, W. J.; Moolenar, M. J.; Speckamp, W. N. Tetrahedron Lett. 1984, 25, 5453. - (540) Hanessian, S.; Reinhold: U.; Ninkovic, S. Tetrahedron Lett. 1996, *37*, 8967. - (541) Hanessian, S.; Reinhold: U.; Gentile, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 1881. - (542) Fenster, M. D. B.; Patrick, B. O.; Dake, G. R. Org. Lett. 2001, 3, 2109. - Vojkovsky, T.; Weichsel, A.; Patek, M. J. Org. Chem. 1998, 63, - Wang, H.; Ganesan, A. *Org. Lett.* **1999**, *1*, 1647. Van Maarseveen, J. H.; Meester, W. J. N.; Veerman, J. J. N.; Kruse, C. G.; Hermkens, P. H. H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 2001, 994. - (546) Meester, W. J. N.; Rutjes, F. P. J. T.; Hermkens, P. H. H.; Hiemstra, H. Tetrahedron Lett. 1999, 40, 1601. - Wang, S.-S. J. Am. Chem. Soc. 1973, 95, 1328. - (548) Glusa, E.; Grüner, H.; Hagen, A.; Lohmann, D.; Foken, H. Pharmazie **1990**, 45, 408. - (549) Ruchirwat, S.; Chaisupakitsin, M.; Patranuwatana, N.; Cashaw, J. L.; Davis, V. E. Synth. Commun. **1984**, *14*, 1221. Sarges, R. J. Heterocycl. Chem. **1974**, *11*, 599. - (551) Kumar, P.; Dhawan, K. N.; Kishor, K.; Bhargava, K. P.; Satsangi, R. K. J. Heterocycl. Chem. 1982, 19, 677. - (552) Spath, E.; Lederer, E. *Chem. Ber.* **1930**, *63*, 2102. (553) Akabori, S.; Saito, K. *Chem. Ber.* **1930**, *63*, 2245. - (554) Hahn, G.; Ludewig, H. *Chem. Ber.* **1934**, *67*, 2031. (555) Kawate, T.; Nakagawa, M.; Ogata, K.; Hino, T. *Heterocycles* **1992**, *33*, 801. - (556) Pictet, A.; Spengler, T. Chem. Ber. 1911, 44, 2030. (557) Kondo, H.; Ochiai, H. J. Pharm. Soc. Jpn. 1923, 495, 313; Chem. Abstr. 1923, 17, 3032. - Yokoyama, A.; Ohwada, T.; Shudo, K. J. Org. Chem. 1999, 64, (558) - (559) Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857.(560) Hart, D. J.; Tsai, Y.-M. J. Am. Chem. Soc. 1982, 104, 1430. - (561) Burnett, D. A.; Choi, J.-K.; Hart, D. J.; Tsai, Y.-M. J. Am. Chem. Soc. **1984**, 106, 8201. - (562) Hart, D. J.; Tsai, Y.-M. J. Am. Chem. Soc. 1984, 106, 8209. - (563) Dener, J. M.; Hart, D. J.; Ramesh, S. J. Org. Chem. 1988, 53, 6022. - Dener, J. M.; Hart, D. J. Tetrahedron 1988, 44, 7037. - Choi, J.-K.; Ha, D.-C.; Hart, D. J.; Lee, C.-S.; Ramesh, S.; Wu, S. J. Org. Chem. 1989, 54, 279. - (566) Koot, W.-J.; Van Ginkel, R.; Kranenburg, M.; Hiemstra, H.; Louwrier, S.; Moolenaar, M. J.; Speckamp, W. N. *Tetrahedron* Lett. 1991, 32, 401. - (567) Esch, P. M.; Hiemstra, H.; de Boer, R. F.; Speckamp, W. N. - Tetrahedron 1992, 48, 4659. Udding, J. H.; Tuijp, C. K. J. M.; Hiemstra, H.; Speckamp, W. N. J. Chem. Soc., Perkin Trans. 2 1992, 857. - Udding, J. H.; Tuijp, C. K. J. M.; Hiemstra, H.; Speckamp, W. N. *Tetrahedron* **1994**, *50*, 1907. - Udding, J. H.; Giesselink, J. P. M.; Hiemstra, H.; Speckamp, W. N. Bull. Soc. Chem. Belg. 1994, 103, 329. - (571) Kano, S.; Yuasa, Y.; Asami, K.; Shibuya, S. Chem. Lett. 1986, - (572) Kano, S.; Yuasa, Y.; Yokomatsu, T.; Asami, K.; Shibuya, S. J. Chem. Soc., Chem. Commun. 1986, 1717. - (573) Kano, S.; Yuasa, Y.; Yokomatsu, T.; Asami, K.; Shibuya, S. Chem. Pharm. Bull. 1988, 36, 2934. (574) Kano, S.; Yuasa, Y.; Asami, K.; Shibuya, S. Heterocycles 1988, - 27, 1437. (575) Kano, S.; Yuasa, Y.; Mochizuki, N.; Shibuya, S. Heterocycles - **1990**, *30*, 263. Sato, T.; Mori, T.; Sugiyama, T.; Ishibashi, H.; Ikeda, M. Heterocycles **1994**, *37*, 245. (576) - (577) Sato, T.; Mori, T.; Sugiyama, T.; Ishibashi, H.; Ikeda, M. J. Chem. Soc., Perkin Trans. 1 1995, 1801. - (578) Tsai, Y.-M.; Nieh, H.-C.; Pan, J.-S.; Hsiao, D.-D. Chem. Commun. **1996**, 2469, - (579) Clauss, R.; Hunter, R. J. Chem. Soc., Perkin Trans. 1 1997, 71. - Esch, P. M.; Hiemstra, H.; Speckamp, W. N. Tetrahedron Lett. (580)**1990**. *31*. 759. - Corey, E. J.; Mehrotra, M. M. Tetrahedron Lett. 1988, 29, 57. - Beckwith, A. L. J.; Boate, D. R. Tetrahedron Lett. 1985, 26, 1761. - (583) Bachi, M. D.; Hoornaert, C. Tetrahedron Lett. 1981, 22, 2689. (584) Bachi, M. D.; Hoornaert, C. Tetrahedron Lett. 1981, 22, 2693. (585) Bachi, M. D.; Hoornaert, C. Tetrahedron Lett. 1982, 23, 2505. - (586) Bachi, M. D.; Frolow, F.; Hoornaert, C. J. Org. Chem. 1983, 48, - (587) Bachi, M. D.; De Mesmaeker, A.; Stevenart-De Mesmaeker, N. Tetrahedron Lett. 1987, 28, 2637. - Bachi, M. D.; De Mesmaeker, A.; Stevenart-De Mesmaeker, N. Tetrahedron Lett. 1987, 28, 2887. - (589) Bosch, E.; Bachi, M. D. J.
Org. Chem. 1993, 58, 5581. - (590) Bachi, M. D.; Bar-Ner, N. Bioorg. Med. Chem. Lett. 1993, 3, 2439. - (591) Snieckus, V.; Cuevas, J.-C.; Sloan, C. P.; Liu, H.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 896. - (592) Hilton, S. T.; Ho, T. C. T.; Pljevaljcic, G.; Jones, K. Org. Lett. **2000**, 2, 2639. - (593) Hilton, S. T.; Ho, T. C. T.; Pljevaljcic, G.; Schulte, M.; Jones, K. Chem. Commun. 2001, 209. - Gribble, G. W.; Fraser, H. L.; Badenock, J. C. Chem. Commun. 2001, 805. - (595) Beaulieu, F.; Arora, J.; Veith, U.; Taylor, N. J.; Chapell, B. J.; - Snieckus, V. J. Am. Chem. Soc. 1996, 118, 8727. - (596) Maryanoff, B. E., unpublished details. - (597) Ong, C. W.; Lee, H. C. Aust. J. Chem. 1990, 43, 773. - (598) Comins, D.; Badawi, M. M. Tetrahedron Lett. 1991, 32, 2995. - (599) Hakam, K.; Thielmann, M.; Thielmann, T.; Winterfeldt, E. Tetrahedron 1987, 43, 2035. - (600) Hucher, N.; Daich, A.; Decroix, B. J. Heterocycl. Chem. 1998, 35, 1477. - (601) Mondon, A.; Hansen, K. F. Tetrahedron Lett. 1960, 5. - (602) Klemm, L. H.; Hwang, Y. N.; Louris, J. N. J. Org. Chem. 1983, 48, 1451. - (603) Bahajaj, A. A.; Hitchings, G. J.; Moore, M. H.; Vernon, J. M. J. Chem. Soc., Perkin Trans. 1 1994, 1211. - (604) Shinohara, T.; Takeda, A.; Toda, J.; Sano, T. Heterocycles 1998, *48*, 981 - (605) Iida, H.; Endo, I.; Narimiya, M.; Kikuchi, T. Heterocycles 1980, 14, 1325. - (606) Takano, S.; Takahashi, Y.; Hatakeyama, S.; Ogasawara, K. Heterocycles 1979, 12, 765. Lete, E.; Sotomayor, N.; Collado, M. I.; Villa, M.-J. Tetrahedron - Lett. 1996, 37, 6193. - (608) Deak, G.; Gall-Istok, K.; Hazai, L.; Sterk, L. Synthesis 1975, 393. - (609) Narisada, M.; Watanabe, F.; Nagata, W. Tetrahedron Lett. 1971, - Van der Vliet, P. N. W.; Hamersma, J. A. M.; Speckamp, W. N. Tetrahedron **1985**, 41, 2007. - (611) Arai, Y.; Kontani, T.; Koizuma, T. Chem. Lett. 1991, 2135. - (612) Arai, Y.; Kontani, T.; Koizuma, T. J. Chem. Soc., Perkin Trans. 1 **1994**, 15. - (613) Darbre, T.; Nussbaumer, C.; Borschberg, H.-J. Helv. Chim. Acta **1984**, *67*, 1040. - (614) Pigeon, P.; Othman, M.; Netchitailo, P.; Decroix, B. J. Heterocycl. Chem. **1999**, *36*, 691. (615) Sun, P.; Sun, C.; Weinreb, S. M. *J. Org. Chem.* **2002**, *67*, 4337. - (616) Kamatani, A.; Overman, L. E. Org. Lett. 2001, 3, 1229. - (617) Paulvannan, K.; Hale, R.; Mesis, R.; Chen, T. Tetrahedron Lett. **2002**, 43, 203. - (618) Bonnet, D.; Ganesan, A. J. Comb. Chem. 2002, 4, 546. - (619) Katritzky, A. R.; He, H. Y.; Jiang, R. Tetrahedron Lett. 2002, - (620) Hagen, T. J.; Cook, J. M. Tetrahedron Lett. 1988, 29, 2421. - (621) Li, W.; Hanau, C. E.; d'Avignon, A.; Moeller, K. D. J. Org. Chem. **1995**, 60, 8155. - (622) Allin, S. M.; Thomas, C. I.; Allard, J. E.; Duncton, M.; Elsegood, - M. R.; Edgar, M. Tetrahedron Lett. 2003, 44, 2335. Cho, S. D.; Song, S. Y.; Hur, E. J.; Chen, M.; Joo, W. H.; Falck, J. R.; Yoon, Y. J.; Shin, D. S. Tetrahedron Lett. 2001, 42, 6251. Gremmen, C.; Wanner, M. J.; Koomen, G. J. Tetrahedron Lett. 2001, 42, 6251. - **2001**. 42. 8885. - (625) DeNinno, M. P.; Eller, C.; Etienne, J. B. J. Org. Chem. 2001, 66, 6988. - Allin, S. M.; James, S. L.; Martin, W. P.; Smith, T. A. D. *Tetrahedron Lett.* **2001**, *42*, 3943. Allin, S. M.; James, S. L.; Martin, W. P.; Smith, T. A. D.; - Elsegood, M. R. J. Chem. Soc., Perkin Trans. 1 2001, 3029. - (628) Allin, S. M.; Vaidya, D. G.; James, S. L.; Allard, J. E.; Smith, T. A. D.; McKee, V.; Martin, W. P. *Tetrahedron Lett.* **2002**, *43*, 3661. (629) Hwang, D. J.; Kang, S. S.; Lee, J. Y.; Choi, J. H.; Park, H.; Lee, - Y. S. *Synth. Commun.* **2002**, *32*, 2499. - (630) Lee, J. Y.; Bang, S. H.; Lee, S. J.; Song, Y. S.; Jin. C.; Park, H.; Lee, Y. S. *Bull. Korean Chem. Soc.* **2002**, *23*, 1623. - Lee, J. Y.; Baek, N. J.; Lee, S. J.; Park, H.; Lee, Y. S. Heterocycles **2001**, 55, 1519. - Marson, C. M.; Pink, J. H.; Hall, D.; Hursthouse, M. B.; Malik, (632) - A.; Smith, C. *J. Org. Chem.* **2003**, *68*, 792. (633) Allin, S. M.; James, S. L.; Elsegood, M. R.; Martin, W. P. *J. Org.* Chem. **2002**, 67, 9464. - (634)Chihab-Eddine, A.; Daich, A.; Jilale, A.; Decroix, B. Tetrahedron Lett. **2001**, 42, 573. - Heaney, H.; Taha, M. O. Tetrahedron Lett. 2000, 41, 1993. - (636) Heredia, M. L.; de la Cuesta, E.; Avendano, C. Tetrahedron: Asymmetry 2001, 12, 2883. - (637) Padwa, A.; Danca, M. D. *Org. Lett.* **2002**, *4*, 715. (638) Bahajaj, A. A.; Vernon, J. M.; Wilson, G. D. *J. Chem. Soc.*, *Perkin* Trans. 1 2001, 1446. - Zawadzka, A.; Leniewski, A.; Maurin, J. K.; Wojtasiewicz, K.; Czarnocki, Z. Org. Lett. 2001, 3, 997. - Hucher, N.; Daich, A.; Decroix, B. Org. Lett. 2000, 2, 1201 - (641) Koseki, Y.; Sato, H.; Watanabe, Y.; Nagasaka, T. Org. Lett. 2001, - (642) González-Temprano, I.; Sotomayor, N.; Lete, E. Synlett 2002, 4, 593. - (643) Padwa, A.; Crawford, K. R.; Rashatasakhon, P.; Rose, M. J. Org. Chem. 2003, 68, 2609. - Katritzky, A. R.; Xu, Y. J.; He, H. Y.; Mehta, S. J. Org. Chem. **2001**, 66, 5590. - (645) Katritzky, A. R.; Mehta, S.; He, H. Y. J. Org. Chem. 2001, 66, 148. - (646) Todd, M. H.; Ndubaku, C.; Bartlett, P. A. J. Org. Chem. 2002, 67, 3985. García, E.; Arrasate, S.; Ardeo, A.; Lete, E.; Sotomayor, N. (647) - Tetrahedron Lett. **2001**, 42, 1511. Mamouni, A.; Daich, A.; Marchalin, S.; Decroix, B. Heterocycles - **2001**, *54*, 275. (649) - Hart, D. J.; Magomedov, N. A. J. Am. Chem. Soc. 2001, 123, 5892 - (650) - (651) - Wee, A. G. H.; Yu, Q. *J. Org. Chem.* **2001**, *66*, 8935. Ito, T.; Yamazaki, N.; Kibayashi, C. *Synlett* **2001**, *10*, 1506. Parihar, J. A.; Ramana, M. M. V. *Tetrahedron Lett.* **2003**, *44*, (652)1843. - (653)Hubert, J. C.; Steege, W.; Speckamp, W. N.; Huisman, H. O. Synth. Commun. **1971**, 1, 103. - Chavan, S. P.; Tejwani, R. B.; Ravindranathan, T. J. Org. Chem. (654)**2001**, 66, 6197. - Padwa, A.; Heidelbaugh, T. M.; Kuethe, J. T.; McClure, M. S.; Wang, Q. J. Org. Chem. 2002, 67, 5928 - Padwa, A.; Danca, M. D.; Hardcastle, K. I.; McClure, M. S. J. Org. Chem. 2003, 68, 929. - Sun, H.; Moeller, K. D. Org. Lett. 2002, 4, 1547. - Boer-Terpstra, T.; Dijkink, J.; Schoemaker, H. E.; Speckamp, W. N. Tetrahedron Lett. 1977, 939. - Huang, H. L.; Sung, W. H.; Liu, R. S. J. Org. Chem. 2001, 66, CR0306182